
'■ -■■- X_J> _*_

UCRL-LR-112583

Target Scheduling for
Directed Energy Weapon Platforms

G. C. Corynen

January 1993

19980309 124

WrV-i-M

XXHO QUALITY INSPECTED 4
PLEASE RETURN TO:

WASHINGTON D.C. 20301 7100

\

U^55/

DISCLAIMER

This document was prepared as an acccount of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately own rights. Reference herein to any specific commercial products, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for advertising or product
endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W-7405-Eng-48.

Accession Number: 4551

Publication Date: Jan 01,1993

Title: Target Scheduling for Directed Energy Weapon Platforms

Personal Author: Corynen, G.C.

Corporate Author Or Publisher: Lawrence Livermore National Laboratory, Livermore, CA 94551 Report
Number: UCRL-LR-112583

Descriptors, Keywords: Target Schedule Directed Energy Weapon DEW Boost Phase Platform
Acquisition Track Laser HEL

Pages: 00171

Cataloged Date: Jul 06,1993

Document Type: HC

Number of Copies In Library: 000001

Record ID: 27368

UCRL-LR-112583
Distribution Category UC-705

Target Scheduling for
Directed Energy Weapon Platforms

G. C. Corynen

Manuscript date: January 1993

LAWRENCE LIVERMORE NATIONAL LABORATORY ll|
University of California • Livermore, California • 94551 ^«r

Contents

Nomenclature x

Executive Summary 1
Introduction 1
The Real-Time Target Scheduling Problem 1
Approach 3
Program Contributions 4

1. Introduction 5
1.1 Background 5
1.2 The Boost Phase 8
1.3 The Midcourse Discrimination Phase 8
1.4 Report Structure 10

2. Target Scheduling: A Statistical Decision Problem 11
2.1 Statistical Decision Theory: Some Definitions 11
2.2 A Definition of the Target Scheduling Problem (TSP) 13

2.2.1 Principal Elements of the TSP 13
2.2.1.1 The Observation Process X 14

2.2.1.1.1 The Target Process XT 14
2.2.1.1.2 The DEW Platform Process XD 17
2.2.1.1.3 The Environmental Process XE 17
2.2.1.1.4 The Sensor Process Xs 18
2.2.1.1.5 The Overall Measurement Process X 19

2.2.1.2 The Decision Maker DM 20
2.2.1.2.1 The Decision Rule d 20
2.2.1.2.2 The Loss Function L 21

2.2.1.3 The Feasible Set F 22
2.2.1.3.1 Time Constraints (CT, fa) 23

2.2.1.3.1.1 Retarget Times 24
2.2.1.3.1.2 Dwell Times tD 27

2.2.1.3.2 Resource Constraints (CE, fs) 27
2.2.1.4 The Optimization Criterion H 28

2.2.2 The Optimization Problem 31
2.2.2.1 Introduction 31
2.2.2.2 Optimization Approach 33

in

3. Scheduling Theory for the Boost Phase 39
3.1 Selecting the Permutation TT 41

3.1.1 Tour Initialization 44
3.1.2 Vertex Selection and Insertion 44
3.1.3 Tour Improvement 45

3.2 Target Rejection 47
3.2.1 The Rejection Criterion r 47

3.2.1.1 The Dwell and Retarget Times AtD* and AtR 49
3.2.1.2 The Deadline Hardness Constant a 50
3.2.1.3 The Identification Probability p* 50

3.2.1.4 The Posterior Loss L* 51
3.3 Selecting the Dwell Time Vector tD 52

3.3.1. Deriving the Optimal Dwell Time tD* from p*K 54
3.3.1.1 The Functional Relationship Between L and Eg 56
3.3.1.2 The Probability Distribution of MD 58
3.3.1.3 The Probability Distribution of L 59
3.3.1.4 Deriving the Dwell Time tD* 60

3.4 Designing Smooth Command Schedules to Minimize Hardware Jerk 62

4. The Target Scheduling Algorithm for the Boost Phase 69
4.1. Introduction 69
4.2. Local Optimization: Optimal Sequencing and Target Rejection 71

4.2.1 Initial Tour Construction (Subroutine INITOUR) 73
4.2.1.1 Computing Deadline Equivalence Classes 74

4.2.1.1.1 Heaps 74
4.2.1.1.2 Heap Construction 75
4.2.1.1.3 Heap Search 75
4.2.1.1.4 HEAPSORT 75

4.2.1.2 Updating Target States 75
4.2.1.3 Connecting Target Classes 76
4.2.1.4 Shortest Path Through a Class 76
4.2.1.5 Class Exit Target and Class Exit Time 77

4.2.2 Tour Verification 77
4.2.3 Tour Improvement 77
4.2.4 Target Rejection 79

4.3 Global Optimization: Optimal Dwell Times 80
4.4 The Ground-Based DEW 82

5. Scheduling Targets During the Midcourse Discrimination Phase 85
5.1 Introduction 85
5.2 The Target Classification Problem 90

IV

5.2.1 The Observation Process X 94
5.2.1.1 The Target Regeneration Count NT 95
5.2.1.2 The Sensor Noise Count Ns 102
5.2.1.3 The Environmental Noise NE 102
5.2.1.4 The Total Count NTOT 102

5.2.2. The Decision Maker DM 105
5.2.2.1 The Decision Rule d 105
5.2.2.2 The Loss Function L 106

5.2.3 The Feasibility Set F 107
5.2.4 The Optimization Criterion H 107

5.2.4.1 The Loss Function L 107
5.2.4.2 The Probability Measure Vx 107
5.2.4.3 The Objective Function 11 109
5.2.4.4 Optimizing the Classification Risk TZC 110

5.3. The Target Scheduling Problem Ill
5.3.1 Selecting the Permutation -K Ill
5.3.2 Target Rejection 113

5.3.2.1 Calculating Cloud Dwell Times 113
5.3.3 Selecting the Dwell Time Vector tD 116

6. Testing the DDTS Algorithm 119
6.1 Introduction 119
6.2 The THREATSIM Simulator 119

6.2.1 Scenario and Parameter Specification 120
6.2.1.1 The Threat 126

6.2.1.1.1 Global Threat Characteristics 126
6.2.1.1.2 Individual Target Characteristics 126

6.2.1.2 Background and Environment (B & E) 127
6.2.1.3 The Sensor Network 127
6.2.1.4 The DEW Platform 127

6.2.2 Simulating Cluster Centroid Motion 128
6.2.2.1 Cluster Centroid Position 128

6.2.2.1.1 Linear Profile 128
6.2.2.1.2 Circular Profile 129
6.2.2.1.3 Random Profile. 129

6.2.2.2 Cluster Centroid Velocity. 129
6.2.2.2.1 The Convergent Linear Dynamic 130
6.2.2.2.2 The Convergent Circular Dynamic 130
6.2.2.2.3 The Divergent Linear Dynamic 131

6.2.3 Simulating Target Motion 131
6.2.3.1 Target Positions 131
6.2.3.2 Target Velocities 132

6.2.4 Modeling Deadline and Release Times 132
6.2.4.1 Deadline Simulation 132
6.2.4.2 Release Time Simulation 132

6.3 Testing DDTS 132
6.3.1 Expected Leakage Risk versus Defense Reation Time 133
6.3.2 Expected Leakage Risk versus Engagement Time 134
6.3.3 Quantity of Targets Leaked versus Initial Beam Position 134
6.3.4 Expected Leakage Risk versus Cluster Centroid Speed Variance 135
6.3.5 CPU Running Time versus Threat Size 136
6.3.6 Risk versus Probability of Correct Target Identification 137
6.3.7 Risk versus Fast Steering Damping Constant 138
6.3.8 Risk versus Fast Steering Motion Limit 139

7. Conclusions and Future Work 141

Acknowledgments 143

Appendix A. Derivation of Derivatives 147

Appendix B. Derivation of the Normal Approximation for P(Z > z) 151

Appendix C. Deriving the Dwell Time tD* from the Kill Probability p*K 153

Appendix D. Heaps 161

Appendix E. Computing p(X <Y) 163

References 167

VI

List of Figures

1. Input-output diagram of the target scheduling function 2
1.1. Target scheduling is the principal battle management function

on a DEW platform 6
1.2. As interrogration time by the DEW increases, the classification risk

decreases and the risk of target rejection increases 9
2.1. Transformation to spherical coordinates 16
2.2. The sensor coordinate system (xs, ys, zs) is a translation of the earth-

centered coordinate system (x£, HE, ZE) by the displacement vector Xß 19
2.3. Second-order non-linear approach to estimating DEW retarget time

showing unit STEP response 25
2.4. Computing the angular separation 9i between targets T;_i and Tj in

earth coordinates 27
2.5. Simplified flowchart of the Deadline-Driven Target Scheduling

(DDTS) algorithm 35
2.6. Risk decreases with increasing p until the dwell time causes target tardiness. . 38

3.1 The DDTS algorithm consists of two nested optimization loops 40
3.2. An illustration of the original tour To and its permutation r(ir) 42
3.3. Changing edges t\ and es for edges e& and eio in the 2-opt tour

improvement procedure 46
3.4. Target Tj is skipped by traveling directly from Tj-i to Tj+\ 50
3.5. Dwell time is very sensitive to pK above PNOM 53
3.6. Tardiness losses increase rapidly as dwell times are increased 53
3.7. Local minima are strongly dominated by the pK global minimum, and

ripples of size less than e have negligible affect on the optimum value p*K 54
3.8. Geometry used to compute pK and tD 55
3.9. Geometry used to compute AEFF (MD = REg) 57

3.10. The function | AEFF \ (REe) 57
3.11. The Cumulative Distribution Function (CDF) of | AEFF 1 60
3.12. For our problem,this is a good approximation to the Gaussian

cumulative distribution 61
3.13. The forebody trajectory from (X[B,t);) towards [X^+r+1, tjt+r+1 J may be

extended towards (X^+r+2, ££+,.+2) if au intervening targets fall within
the tube generated by the moving circles 63

3.14. The forebody drifts smoothly through target e^-neighborhoods 64
3.15. Flowchart for the forebody smoothing algorithm 65

vii

4.1. A threat with m deadlines showing the m deadline-equivalence classes 69
4.2. Input-output sketch of DDTS 70
4.3. The inner loop of the DDTS algorithm is a local optimization loop

with four major subroutines 72
4.4. The INITOUR initial tour construction subroutine 73
4.5. A 12-element heap and its implied ordering 74
4.6. Classes are connected to minimize retarget time 76
4.7. Simplified flowchart of the 2-opt tour improvement subroutine 78
4.8. Target rejection is accomplished using the r-heap 79
4.9. Convergence to a minimum by inverse parabolic interpolation 81

4.10. Geometry for the ground-based DEW 83

5.1. In response to an interrogation pulse from the DE platform (D), targets
emit a response beam that may be observed by one or more target
sensors (Sj) for target classification 85

5.2. As interrogation time r is increased, classification errors decrease, but less
targets can be processed by their due date 86

5.3. The target scheduling problem during the midcourse phase is to (1) find
a best tour through the target clouds and (2) allocate an optimal inter-
rogation time to each target 88

5.4. Rough sketch of the optimal target classification problem 93
5.5. Neutral Particle Beam (NPB) target interrogation geometry. 96
5.6. Calculating path losses in an exponential atmosphere of height ho 97
5.7. Simplified model of NPB-Target interaction where the target (T) is

modeled as a projected area AT of radius rx 99
5.8. The cumulative distribution function of AEFF 101
5.9. The distribution of NTOT

1S found by convolution 103
5.10. The conditional probability densities of the total count fN (n \g) for

decoys (0 = 2), replicas (0 = 1), and RVs (6 = 0) T.OT. 106
5.11. In Case 2, target classification risks are minimized by optimizing the decision

threshold 77; for each target cloud ui using the BRENT algorithm 112
5.12. Probability density function of the target-to-cloud centroid distance

in the projection plane 115
5.13. The total dwell time r is optimized in the outer loop and equally divided

among all M targets in the threat 117

6.1. Organization of Sections 6.2.1-4 120
6.2. Defining the earth-center coordinate system E 121
6.3. Satellite orbital planes P2 are specified by two sequential rotations, the

first about Z£ and the second about Xßx 122
6.4. Even for a mild threat, DDTS reduces risk considerably 133

vni

6.5. DDTS gets better answers faster 134
6.6. The algorithm is very insensitive to initial beam position 135
6.7. DDTS is much less sensitive to velocity effects 135
6.8. In spite of considerable physics and optimization work, the DDTS

algorithm is efficient in time and space 136
6.9. Platform performance is very sensitive to correct target identification 137

6.10. System performance is not sensitive to fast steering damping 138
6.11. Motion limits had no effect on performance for the threat considered 139

A.l. Coordinate transformation diagram 147
C.l. Plot of the CDF of A(q0 = 1 - Po) • • • 155
C.2. CDF of A 156
C.3. Plot of pK{ß > 0) 158
D.I. Ordering implied by a "heap," here of 12 elements 162
E.l. CDF of AEFFX !63

E.2. CDF of AEFFY 163
E.3. Calculating p{X <Y) 164

IX

Nomenclature

ATP

B&E

C-language

CDF

DDTS

DE

DEW

FB

FS

HEL

LLNL

NN

NPB

pdf

RL

RV

SDI

SPT

THREATSIM

TOL

TSP

WTA

Acquisition, Tracking, and Pointing

Background and Environment

object- and pointer-oriented scientific programming language with
dynamic memory allocation capabilities

Cumulative Distribution Function

Deadline-Driven Target Scheduling

Directed Energy

Directed Energy Weapon

forebody

fast steering subsystem

high-energy laser

Lawrence Livermore National Laboratory

nearest neighbor

neutral particle beam

probability density function

Rome Laboratory, Griffiss Air Force Base, Rome, NY

Reentry Vehicle

Strategic Defense Initiative

shortest processing time

a ballistic missile threat simulation package

accuracy tolerance variable in the BRENT algorithm

Target Scheduling Problem

Weapon-Target Assignment

Target Scheduling for
Directed Energy Weapon Platforms

Executive Summary

Introduction
This final report documents the results of a three-year technology development pro-

gram sponsored by the Rome Laboratory (RL) as part of the Strategic Defense Ini-
tiative (SDI) and executed at the Lawrence Livermore National Laboratory (LLNL).
The major objectives of this program were to develop, test, and deliver algorithms for
managing Directed Energy Weapons (DEW) platforms during defensive engagements
with a number of offensive weapons, which we shall call the targets. The main focus
of this program has been on space-based High-Energy Lasers (HEL) and Neutral Par-
ticle Beam (NPB) platforms operating in earth-orbit during the boost and midcourse
phases.

The Real-Time Target Scheduling Problem

During the prosecution of targets, the effective allocation of weapon energy is the
key to achieving optimal platform performance. This involves three major real-time
tasks:

1. To derive the order in which targets should be prosecuted.

2. To determine how much energy and time should be allocated to
each target.

3. To decide which targets should be allowed to leak through when-
ever there is insufficient time to effectively prosecute all targets.

The first task is called target sequencing; the second, dwell time allocation; and the
third, target rejection. Collectively, all three tasks constitute a target scheduling task, to
which we shall usually refer as the Target Scheduling Problem (TSP). The major goal
of our program was to develop, test, and deliver real-time algorithms to perform this
decision task for boost phase and midcourse threats ranging from a few to thousands
of objects.

There has been a long-held belief in some battle management circles that this com-
prehensive decision task should be performed at the overall battle management level
on a separate platform. In our opinion, the centralized control of complex, dynamic

networks whose nodes strongly depend on local data and conditions is usually doomed
to failure due to excessive communication requirements, and because severe vulner-
abilities are usually inevitable with a fully centralized approach. Furthermore, the
memories and processing units of battle managers are usually fully occupied with over-
all battle decisions such as the allocation of clusters of targets to individual platforms.
A distributed battle management policy is then far better because it lets individual
platforms decide how to handle each element of their assigned cluster.

Conceptually, TSP can be classified as a "single-maching job shop scheduling prob-
lem".* While such problems have received considerable attention for many years, TSP
is peculiar in so many complicating ways that the direct application of existing schedul-
ing methods was not possible. Because the performance and robustness of real-time
decisions algorithms is essentially determined by the quality of the physical models and
data from which they are derived, most of the numerical and computational challenges
experienced during our research resulted from our choice of modeling detail. Many of
these difficulties could have been avoided by choosing a more convenient and necessar-
ily more abstract modeling viewpoint, as others have done before us. But the need to
achieve or at least to approach true operational optimality was a strong motivation to
seek models that adequately reflect the physical reality within which engagements take
place. In contrast to general and theoretical scheduling algorithms, target scheduling al-
gorithms derive their decisions from a wide variety of real-time dynamic and stochastic
data, and they must therefore be strongly physics-based.

A simple input-output description of the target scheduling decision function is pro-
vided in Fig. 1. In response to threat information updates, and given current informa-

Optimization criterion
Constraints

Treat information'

1
Target

scheduler

Fast steering commands
Forebody commands
Platform commands
Target sequence
Target dwell times

t
DEW platform parameters
Sensor information
Environment and background information

Figure 1. Input-output diagram of the target scheduling function.

* French (1982); Ibaraki and Katoh (1988); Baker (1974); Conway et al. (1967).

2

tion about the DEW platform, the external sensor network and the environment, the
scheduling algorithm generates commands to the platform and to its control hardware.
Output commands specify the start time and duration of DEW pulses, the desired
pointing direction of the platform, the forebody, and the fast beam steering system.
Any errors in the command-generating process can significantly reduce platform effec-
tiveness, thereby severely increasing target leakage, so that the search for an optimal
command sequence is essential. Any discontinuities in the command sequence can pro-
duce unwanted oscillations or vibrations in the platform structure, so special attention
must be directed to produce smooth command sequences.

Approach

In our search for an optimal command sequence, we attempt to minimize the expected
leakage cost, usually referred to as the (expected) Leakage Risk. Most of the difficulties
in estimating the minimum risk are due to errors in evaluating the actual leakage risk
in real time, and this imposes minimal modeling fidelity requirements. For instance,
threat descriptions provided to the scheduling algorithms must include threat geometry,
threat dynamics, and uncertainties in state and in parameters. DEW platform models
must account for errors in Acquisition, Tracking, and Pointing (ATP) and errors in
information handovers from external battle management and sensor platforms.

The risk minimization process is also subject to rigid energy and dynamics con-
straints. Platform hardware, for instance, is subject to hard limits in angular displace-
ment, slew rates, acceleration, and mechanical damping. These limits increase platform
response time, stretch out the operational timeline, and may require ignoring or reject-
ing some target so that others can be successfully prosecuted. Other constraints are
due to restrictions in the opportunity windows within which threats must be processed.
Each target has an opportunity window that opens at the target's availability, or re-
lease time, and closes at its deadline, the time by which the processing of the target
must be completed, lest it leak through. Missed deadlines result in the sure leakage of
one or more targets and, for anything but the sparsest threats, deadlines contitute our
most severe constraints. Because their satisfaction was our highest scheduling prior-
ity, we have appropriately called our algorithm the Deadline-Driven Target Scheduling
(DDTS) algorithm.

Target scheduling is easily the most computation-intensive decision process onboard
a platform. Analytically intractable, the problem can only be solved in real time
by using heuristics designed to approach optimum performance within acceptable er-
rors. Reasonable upper bounds for such errors have not yet been found, even for
most simplified versions of the target scheduling problem. To attain a satisfactory de-
gree of confidence in the algorithm's performance, our approach involved a balanced
mixture of theoretical and empirical arguments. On the theoretical side, analytical
intractabilty was controlled by decomposing or reducing the problem into a few special
cases whose theoretical structure is well understood. Examples of such reductions are

the well-known Traveling Salesman Problem, and the standard One-Machine Job Shop
Scheduling Problem (French 1982). A significant level of confidence was achieved by-
verifying that our algorithm performed as expected on such well-known special cases.

On the empirical side, we developed a simulation package called THREATSIM to
drive the DDTS algorithm with a wide variety of threat scenarios to fill the performance
verification gaps left open by our theoretical approach. Designed to reveal the worst
possible behavior of DDTS, THREATSIM is allowed to violate the laws of nature
in order to produce synthetic threats that, although they will not be encountered
in practice, may be used to "stress" the algorithm so that an adequate sensitivity
assessment can be made.

While our scheduling algorithm automates tasks conventionally performed by hu-
mans, we have not recognized any benefits in applying concepts in Artificial Intelligence,
Neural Nets, or Fuzzy Logic; therefore, we used only standard operation research and
computer science methods.

Program Contributions

Contributions were made at two major levels during the three-year research period.
At the conceptual level, we made significant improvements to scheduling technology by
extending some conventional scheduling and network flow techniques to include stochas-
tic and dynamic nodes and arcs. We thoroughly evaluated the DDTS algorithm, which
is admittedly heuristic to some extent, by applying combinatorial complexity analysis
techniques to important special cases. We also developed the THREATSIM algorithm
to simulate a wide variety of threats and to reveal the behavior of DDTS in situa-
tions not encompassed by theoretical methods. This evaluation process confirmed that
DDTS performs very well and is robust to input and parameter perturbations. Using
appropriate trajectory and scheduling predictions, the algorithm also produces smooth
command streams, thereby significantly reducing platform component "jerking".

At the applications level, we have developed, tested, and delivered to RL an efficient
real-time target scheduling software package that optimally allocates the energy of
a DE weapon by minimizing leakage risk during the boost phase and discrimination
risk during the midcourse discrimination phase. With minor modifications, the DDTS
algorithm can also be applied to many other resource allocation problems that may
arise not only in strategic but also in tactical situations. Because the algorithm is
strongly physics-based, it is also a sensitivity analysis tool with which the effects of
parameter or input variations on the overall platform performance can be assessed.
And with simulation drivers such as THREATSIM, DDTS may also be used as an
end-to-end platform simulation structure.

1. Introduction

1.1. Background

The real-time allocation of weapon resources is operationally the most critical and
computationally the most challenging battle management function on-board a weapons
platform. On Directed Energy Weapon (DEW) platforms, this function requires the
completion of three major tasks:

1. Target Sequencing to determine the order in which targets
must be prosecuted.

2. Dwell Time Allocation to decide how long the DEW should
dwell on any target.

3. Target Rejection to select the targets that should be allowed
to leak through.

Collectively, these tasks constitute the Target Scheduling Problem (TSP). The purpose
of this report is to present a solution to TSP for platforms designed to engage hundreds
of targets during the boost-phase kill mission and thousands of objects during the
midcourse discrimination mission (Fig. 1.1).

As a special case of the general Weapon-Target Assignment (WTA) problem,* TSP
has received much attention in the applied literature, where it is usually expressed as
,a statistical decision problem and is thus solved as an optimization problem: This is
also our approach, and we have chosen Expected Risk as our objective function for
designing the target scheduler. In the boost phase, this is equivalent to minimizing the
expected total value of the targets that leak through (Expected Leakage Risk), and in
the midcourse discrimination phase it is roughly equivalent to minimizing the expected
total value of the targets that are misidentified (Expected Misidentification Risk). When
target values are all equal, these performance measures obviously reduce to the expected
total quantity of targets that leak through or are misidentified, respectively.

In spite of the valued work of others, one or more of the following target scheduling
difficulties have been insufficiently addressed in previous studies:

1. Deadline and Release Time (opportunity window) constraints.

2. Random and time-varying variables and parameters.

3. Uncertainties in target type and identification (ID).

* See Hosein and Athans (1990), Castanon et al. (1989a,b), Mealy and Megaloudis (1989).

5

->

4
CU u

s M o c o. «■I S c
< •a

s

•o

e
E o u
e o
•3
O
e

£

a

a
c
o
e o
^ u
e

s
I
V
M
iS c
I
es
£)
"«8
a
'3
c
a.

M
C

"3

DC
u
es
H

4>
U
s
M

S 2 5

ff ä-l

4. Dynamic predictions of future threat and platform states are
required to achieve optimal energy and time allocation.

5. Target values are unequal and may be uncertain.

6. Threats may not be aggregated and must be processed as point-
by-point allocations.

7. When timelines are too tight to satisfactorily process all targets,
some may have to be ignored or rejected.

8. Bayesian priors on target types and on other essential random
variables must be fused with observations to obtain best poste-
rior estimates.

9. Background and environmental noise processes must be consid-
ered.

10. Scheduling "horizons" must be denned to avoid scheduling tar-
gets too far into the future, where state predictions are unreli-
able.

11. Dynamic insertion and deletion of targets on the scheduling
"stack" must be allowed.

Previous battle management discussions have also been too abstract for direct real-
time application; therefore, proposed algorithms must be more physics-based. In se-
quencing targets to meet deadlines, for instance, assuming a linear relationship between
target completion (retarget plus dwell) times and their angular separations may lead to
unacceptable errors. The settling times of the platform hardware must be considered,
and various non-linear constraints on hardware positioning, slewing, and acceleration
must be obeyed. Furthermore, target dwell times strongly depend upon the lethality
of the DEW, the vulnerability of the targets, and the accuracy and stability of the
beam control subsystem. Decision algorithms must therefore (1) include reasonable
beam-target interaction models and (2) account for various Acquisition, Tracking, and
Pointing (ATP) errors. All this may strongly influence the design or selection of the
optimization algorithms, as it did on the program discussed in this report.

At the theoretical level, similar shortcomings exist in the current literature, although
two important special cases of our scheduling problem have received considerable at-
tention. The first is the well-known Traveling Salesman Problem,* which applies to
cases without time windows and where dwell times and retarget times are fixed. But

* Lawler (1971); Lawler et al. (1985); Norback and Love (1977); Flood (1956); Garey
and Johnson (1979); Eddy (1977); Sedgewick (1988).

even then a heuristic approach is needed (Laporte 1992) because the classical traveling
salesman problem is itself Nondeterministic Polynomial (NP)-hard (Garey and Johnson
1979). The second special case is known as the "One-Machine Job Scheduling Problem
with Ready and Due Times"; this was solved in Kise et al. (1978) using the quantity of
late ("tardy") jobs as an objective function, and with some mild ordering assumptions
on the ready (release) times and deadlines. In the Kise study, no waiting or "transi-
tion" times were allowed, all jobs had equal value, and all problem parameters were
constants.

In spite of recent formal efforts to mix both problems (Daniels 1990, Tsitsiklis 1992),
we had no choice but to include several heuristic arguments in our scheduling approach.
But heuristic arguments were used only to extend the well-known solutions of impor-
tant special cases to our new problem, thereby providing considerable error control
since our algorithms were designed to agree with others on those special cases. We
completed a thorough review of other potentially useful methods to accomplish these
extensions, including Artificial Intelligence, Neural Nets, and Fuzzy Logic, but we have
not recognized any benefits in using such methods. Even though our algorithms are
easily parallelizable, we have intentionally ignored hardware implementation issues.

1.2. The Boost Phase

During this phase, the platform's primary mission is to destroy boosters to minimize
the expected leakage risk, subject to opportunity window constraints. At regular in-
tervals, the target scheduler receives threat updates from external platforms and from
on-board sensors and monitors. For each interval, the scheduler must do the best it
can with the information acquired during that interval; each interval is treated as a
new phase in the scheduling process, even though information may remain valuable for
several update intervals.

1.3 The Midcourse Discrimination Phase

During midcourse, target Re-entry Vehicles (RVs) will typically be surrounded by
several decoys and replicas, thereby forming "clouds" of objects whose type must be
resolved prior to allocating energy or dispatching interceptors. This discrimination
function also involves a scheduling task much like that in the boost phase. In this
task, a subtle tradeoff must be resolved between two risks, a classification risk and a
rejection risk (Fig. 1.2).

The classification risk is the total expected value of the target lost due to improper
identification, and it is computed using conventional Bayesian classification methods.
The Bayesian optimization approach is not bound by the strong and often impractical
assumptions required to apply the notion of "k-factor", an approach still widely used
in some sensor technologies (Holmes and Rocklin 1990; Rocklin and Tolleson 1986).

Rejection

Risk

Interrogation time

Figure 1.2. As interrogation time by the DEW increases, the classification risk decreases
and the risk of target rejection increases.

For each misidentified decoy or replica, we assume that only the cost of one intercep-
tor or lethal energy dose is wasted, depending upon the midcourse interception mode
assumed. We also assume that each misidentified RV leaks through. The rejection risk
is the total expected value of the targets that are not processed by their due date.

As target interrogation (dwell) time is increased, classification risk obviously de-
creases and rejection risk increases because the time line is stretched out. The sum of
both risks can thus be minimized by finding an optimal value r* of the interrogation
time.

Inputs to the platform include the dynamic state of cloud centroids, but not of
individual cloud elements (RVs, decoys, replicas). The platform is thus expected to
resolve each cloud into its contituent elements, but we have not included that function
in our scheduling algorithm.

Target interrogation is accomplished with a Neutral Partricle Beam (NPB), and
target classification algorithms must include suitable beam-target interaction models
and a neutral particle collection model for each of the deployed sensors. Although
data fusion is an issue because we have a sensor network, we assume the simple fusion
policy where the network output is equal to the particle count of the sensor whose
signal-to-noise ratio is greatest.

1.4 Report Structure
Organizing this report was a very difficult task: our discussion spans many levels

of discourse and there is considerable technical overlap among many of the issues ad-
dressed in this program. We also lost track to some extent of exactly where the greatest
amount of resources were expended throughout this three-year research program. In
retrospect, it seemed that technical difficulties were so interdependent that, as soon as
we thought a problem was laid to rest, it was resuscitated by new issues deferred earlier.
This is a familiar situation when maximal efficiency is demanded from an algorithm,
so we settled on the following organization.

In Chapter 2 we lay the decision-theoretic foundations for our scheduling algorithm,
and we carefully define the stochastic processes that describe the various measurement
processes that drive the decision problem. We state what we mean by a "decision
maker", and, after defining problem constraints, we present a precise discussion of
the optimization issue. We then summarize our approach to solving the optimization
problems for the boost and midcourse phases.

In Chapter 3 we focus on the boost phase, and we go deeper into the structure of the
scheduling algorithms. Drawing from the traveling-salesman literature, we show how
optimal tours are constructed and improved as needed, how targets are rejected when
necessary, and how optimal dwell times are derived. In Chapter 4, the boost phase
Deadline-Driven Target Scheduling (DDTS) algorithm is translated into software. We
describe in detail how the running time of DDTS is minimized by employing efficient
sorting and searching techniques, and we also discuss the tour construction software in
detail. We conclude by including an important extension from space-based platforms
to ground-based DEWs.

We address the midcourse discrimination phase in Chapter 5. Since the basic schedul-
ing issue is similar to that in the boost phase, we concentrate on the inner optimization
loop concerned with Target Classification, which we address using Bayesian classifiers,
as we discussed earlier. We especially emphasize the physical processes assocated with
NPB target interrogation, and we carefully account for the various processes that con-
tribute to the total particle count at each NPB sensor. We conclude Chapter 5 with
a detailed account of how cloud dwell times and retarget times are calculated for two
major cloud distributions consisting of RVs, replicas, and decoys.

In Chapter 6 we report our testing work with DDTS. We start with a description of
THREATSIM, a threat simulator designed to drive DDTS as an end-to-end platform
simulator. We briefly interpret each of eight major tests conducted with the algorithm.
We close the report with Chapter 7, where we present some conclusions from this
extended research program and outline some promising directions for future research.

10

2. Target Scheduling:
A Statistical Decision Problem

The principal purpose of a target scheduling algorithm is to decide, within specific
time and resource constraints, in what order a collection of dynamic and probabilistic
targets should be processed and how many resources should be allocated to each target
so that the risk of target leakage is minimized. In such general terms, the Target
Scheduling Problem (TSP) appears as just another statistical decision problem. As
we suggested in Chapter 1, however, a closer inspection reveals a problem fraught
with complications that have persistently resisted the direct application of existing
decision-theoretic and optimization methods. These difficulties are sufficiently subtle
and pernicious to render essential a careful definition of the TSP before they can be
understood. A clear articulation of the issues is also essential for the recognition of
familiar problems and the application of past and current work of others. We also
found a decision-theoretic formulation of the TSP very useful in obtaining an effective
model that reveals the real-time computational challenges lurking in the background.

In this chapter we do the following. We start by stating what we mean by a "sta-
tistical decision problem", and we carefully describe the canonical elements of such a
problem. Then we define the TSP by providing the required physical and geometric in-
terpretation for the canonical elements. We originally intended to provide a discussion
of the decision problem that does not distinguish between the Boost Phase mission and
the Midcourse mission in order to concentrate on principles and methodology, but such
a generic treatment would have been too abstract. There are important conceptual and
operational differences between the two missions, so we chose instead to emphasize the
boost phase in this chapter, although several excursions into the Midcourse problem
are made whenever conceptual differences prevented a boost phase interpretation.

To adequately capture the dynamics and statistics of the TSP and to reflect our com-
puter implementation approach, we use the general framework of stochastic processes
(Breiman 1968, Chung 1974) to describe the decision problem and all its ingredients.

2.1 Statistical Decision Theory: Some Definitions

Consider a stochastic observation process X = (Xi,... ,Xi,... ,Xn) consisting of
n random observation variables Xi,i = l,...,n, whose underlying probability space
(Breiman 1968, Chung 1974) is PQ =< Q,B,P >. Each Xi is a ß-measurable function
from 0, to R which produces an observation -X,-(w) = x when the true state of nature is
u. Whenever an event A £ B occurs, an event Xi (A) is observed by Xi with probability
P{A).

11

Next consider an action space A and a decision maker DM =< d,L > who chooses
an action d(x) £ A whenever he observes Xi(u) = x £ R, and incurs a loss L(UJ, d(x))
whenever he completes that action. A rational criterion (Berger 1980) for choosing that
course of action is the expected risk

71(d) = EP(L(u,d(x))), (2.1)

the expected value of the loss function L(u>,d(x)) with respect to the probability-
measure P and the decision function d : R —> A. In dynamical problems such as
the TSP, a realization viewpoint (Breiman 1968) is often useful where the index set
7={l,...,i,...,n}isa discrete time scale and, for each u> £ fi, the sequence of ob-
servations (-X"I(ü;), ... X,-(ü;), ... Xn(u)) is considered a function of time i, with u held
fixed. This function, denoted by X(u>), is a realization of the stochastic process X.
Whenever a decision maker chooses a course of action on the basis of the realizations
X(u) of X, he is called a sequential decision maker, and the decision rule d is a function
d: XR —» A from the set XR of realizations of X into the action space A, taking each
xn € XR into an action d(xn) £ A. This situation is captured by the following:

Definition

An instance of a statistical decision problem* is a fourtuple

ISDP =< X, DM, F,1Z> (2.2)

where:

A' is a stochastic observation process on a probability space PQ =< fi, B, P >,

with realizations X .

DM a decision maker with decision function d : X —* A and loss function
L : Q, x A —> C, the loss space.

F is the set of feasible decision functions (Papadimitriou and Steiglitz 1982).
71 is a risk function (objective function) which maps the loss function L,

observation process X, decision function d, and probability space PQ into
a decision risk1Z(L,d,X,PQ).

The basic objective in a statistical decision problem is to choose a feasible course of
action d £ F which minimizes the risk 71. In this report, we confine our attention to
situations where 71 is the expected risk as expressed in Eq. (2.1).

Given a collection of problem instances, one for each d £ F, a statistical decision
problem is an optimization problem:

* Papadimitriou and Steiglitz (1982); Ferguson (1967); Berger (1980).

12

Definition

Consider a collection of feasible instances {ISDPd : deF}. The statistical decision
■problem is to find a decision rule d* G F such that

7l(L,d*,X,PQ) = min{n(L,d,X,PpJ} = 7V . (2.3)
deF

This is the minimum risk, and d* is called a solution to the decision problem.

When no specific choice of X, DM, F, or Tt is intended, and to simplify notation,
we shall occasionally refer to the fourtuple < X, DM, F, Tt > as the decision problem,
with the understanding that the optimization process described in Eq. (2.3) is implicitly
included.

2.2 A Definition of the Target Scheduling Problem (TSP)

The abstract definitions in the previous section were useful in providing a concep-
tual interpretation of the TSP as a canonical decision problem. But the causes and
consequences of scheduling decisions can be properly understood only if an appropriate
physical and geometric interpretation is assigned to each element of the canonical prob-
lem. Such an interpretation is developed in this section. First, we define the elements
of the TSP; then we state the optimization problem.

2.2.1. Principal Elements of the TSP

Recall the definition of a statistical decision problem instantiation (Eq. (2.2)):

ISDP =< X,DM,F,Ti> (2.4)

In the TSP, the decision maker observes the stochastic states of the targets, the sensors,
the DEW, and the environment via a process X whose underlying probability space
PQ describes all the uncertainties that corrupt this observation process.

The "decision maker" DM =< d,L > has a sequential decision rule (Berger 1980)
which generates various decisions and commands from the observation process X. The
rule specifies the order in which targets are prosecuted and the time and energy allo-
cated to each target, and then selects those targets which must be ignored. The rule
also produces position commands to the system controlling the platform main body, the
forebody, and the fast steering subsystem. The resulting actions incur a loss specified
by the loss function L, which accounts for the different values of individual targets that
leak through because of missed deadlines, ATP errors, or insufficient DEW lethality.

The constraint or feasibility set F is determined by a constraint on d which prohibits
(1) scheduling targets before their release time or after their deadline and (2) exceeding
resource limits. Constraints are implicitly defined by deadlines, release times, energy
limits, a target completion time function, and an energy consumption function.

13

In this report, risk is defined as the expected value (E) of a loss function (L) with
respect to the probability of leakage Pi of each target, usually formalized as a risk
criterion H =< L,Pi,E >. For both the boost and the midcourse phase, explicit
forms for the expected risk will be derived in the appropriate sections.

This interpretation, together with the earlier canonical definition, motivate the fol-
lowing representation.

Definition

The Target Scheduling Problem (TSP) is a statistical decision problem

TSP =< X, DM, F,H> (2.5)

whose elements are given in the following subsections of Section 2.2.1.

2.2.1.1. The Observation Process X. Four physical processes are observed
by the decision maker to arrive at scheduling decisions: the targets, the sensors, the
environment, and the DEW platform itself. The decision maker's measurement process
is thus a function of four subprocesses:

X = X(XT,XD,XE,XS) (2.6)

where
XT is the target process.
Xj) is the weapons platform process.
XE is the environment process.
X$ is the sensor process.

As we shall see below, these processes are characterized by states and parameters.
We assume that the decision maker must infer all parametric information from state
measurements or from prior knowledge.

2.2.1.1.1. The Target Process A/r. Consider a set of targets S = {Ti :
i G I}, where I is some (ordered) index set of size (cardinality) \ I \. The ordering
on I induces an ordering on S, producing an ordered target set T =< Ti : i G i" >
of | 7 | targets, also called a target sequence. Whenever we refer to a "target set" in
this report, we shall tacitly assume that this set is ordered by some index set I, or a
permutation thereof.

The target process is a collection Xj = {X{ : i = 1,..., | 11} of individual target
processes Xi, one for each Ti G T.

Each target process is itself a random process defined by a random parameter vector
and a random state vector, as follows:

14

Definition
Xi =< *J{QnW)^T\h\Ql{t,J)XpT > (2.7)

where:
t is the time variable.

PQ is a probability space < QT, BT, P >.
UJ

T
 £ÜT is a sample value from the sample space ft ..

BT is a (7-algebra of events from ft .
PT is a probability measure on BT.

Qf(t,cjT) is the state of Ti at time t when the state of nature is
T

wf(Qf (t, coT),t, wT) is the value at time t of the "parameter vector of Ti when
the state is Qj(t,uT) and the state of nature is or.

hT(Q?(t,uT)) is a function representing the observation of the state

(Ql(t,"T))-
Informally, each target Ti is a probabilistic object whose underlying uncertainties

are captured by Pfi, whose description is parametrized by irf, and whose dynamic
state Qj is observed through sensors h. The parameter vector 7rf (•) typically contains
parametric information about the target's hardness, vulnerability, and type.

The dynamic state of a target T; is predicted At seconds into the future from
some initial handover time io (initialization time) by assuming that Ti travels along
a straight line or along a constant-radius circle centered at the earth. We thus as-
sume a simple first-order dynamical model where the future position Xj(tQ + At) in
earth-centered coordinates (indicated by subscript E) is extrapolated from the initial
position (xEfi, y£0, zBfi) and velocity (xEfi,yEfi,Z£0) as follows (superscript T omitted):

If the angular position of the target in the earth-centered spherical coordinate system
of Fig. 2.1 is (0E(*O), <f>E(to)) at time to, then at time t = to + Ai,

and

where

eE(t) = eE(t0) + eE(t0)At

Mt) = Mio) + J>E(to)At (2.8)

9E(to) = tan-1 (^) ,
XB,0

Zr _1 I E,0
<j>E(t0) = cos I- ■ -^1,

V((^o)2 + (^>0)
2 + (^o)2)

15

]>E(to)

g,o",E,0 ",E,0 E,0 j

w2+w2 '
/ 1 ZEfi (XE,0XE,0 ~^~ ^B.O ^£,0 "*" ZE,Q ZE,0>

((*,„)2 + GW2)1/2A Ko)2 + M2+(v)2 — z.
Efi

The derivation of Eq. (2.8) is straightforward, and it can be found in Appendix A.

^E

Figure 2.1. Transformation to spherical coordinates.

In rectangular earth-centered coordinates, the predicted target position at t = to +

AT is then XE{t) = (xE(t), yE(t), zE(tf), where

and where

xE(t0 + AT) = xE(t) = PE cos 6E(t) sin <f)E(t)

yE(t0 + AT) = yE(t) = PE sin 9E(t) sin^(t) ,

zE(t0 + AT) = zE{t) - PE cos 4>E(t),

1/2

(2.9)

(^)2 + (y£)2 + (^)2J •
Expressing this new position in platform coordinates indicated by subscript P,

XP(t) = R(XE(t) - DE(t)) (2.10)

where DE(t) is the new platform position at t = to + At, and R is the rotation matrix
relating the platform coordinates to the earth-centered coordinate system.

16

2.2.1.1.2. The DEW Platform Process XD. Similar to targets T„ the
DEW platform is a stochastic process modeled by the triple

Xv=<7rD(QD(t,u;%t,uD),hD(QD(t,uJ
D)),Pg)> (2.11)

where the interpretation of irD, hD, and Pg is analogous to that for each T;.

The future platform position XD(t0 + At) At seconds into the future is estimated
in earth coordinates, as for targets T{ (subscript E omitted and w held fixed):

XD(t0 + At) = (xD(tQ + At), yD(t0 + At), zD(t0 + At))

where

xD(t0 + At) = pD cos 9D(t0 + At) sin <f>D(t0 + At) .

yD(t0 + At) = pD sin 6D(t0 + At) sin <j>D(t0 + At) .

zD(t0 + At) = pD cos <f>D(t0 + At) .

6D(t0 + At) = eD(t0) + ÖD(to)At.
^(to + At) = ^(t0) + ^(to)At (2.12).

As discussed in later chapters, the parameter vector 7r-D(«) of a platform typically
contains a parametrized description of the platform power, bias, jitter, beamwidth,
and DEW wavelength.

2.2.1.1.3. The Environment Process X^. The physical environment for
an engagement is described by an underlying probability space and a random parameter
vector, as follows:

XE =< *E(QE(t, «£)), hE(QE(t, uE)), Pg >, (2.13)

where

Pg =(ClE,BE,PE),

QE(t,uJE) is the 5tate of the environment at time t, when the state of nature is wp,
and

hE represents the measurement of the environmental state.

The "environment" typically specifies ambient conditions which influence the out-
come of engagements, but which cannot be directly attributed to targets or platforms.
"Environment" typically includes descriptions of ambient noise, light levels, and back-
ground.

As a good example relevant to midcourse discrimination using particle beams, con-
sider the random particle background count observed by some sensor in space. Then

17

PQ could represent the particle generation process and TT£ could be the expected par-
ticle count at some specific location in space, at the sensor for instance. (See Chapter 5
for a more specific discussion).

2.2.1.1.4. The Sensor Process Xs. Similar to the target process Xj, Xs is
a collection {Sj : j = 1,..., | J |} of sensor processes Sj, each described by a random
parameter vector and a random state vector, as follows:

Sj =< *f(Q?(t,us),t,us), hs(Q?(t,us), P^ > , (2.14)

where:

t is time.
Qj(t, u>') is the state of Sj at time t when the state of nature is u> .

iTj(Qj(t,uj),t,(jj) is the value at time t of the parameter vector of Sj when
the state of Sj is Qj(t,ojs) and the state of nature is ur.

hs(Qj(t,ujs)) is a function representing the observation of the state
Qj(t,u■), typically its expected value at time t.

PQ =< Q, , B , P > is the probability space underlying the parameter vector
and state of 5";.

In contrast to targets and platforms, which may be viewed as point masses since their
orientation is not a critical issue in our analysis (except for their aspect angle 9),
sensors require a higher-dimensional representation. The major reason is that sensors
are typically directional, and they also experience precessions, rotations, and tumbles
as they move through space. We use 12 degrees of freedom to represent the state of
sensors (see Fig. 2.2):

QS =< Xf, XS
E; a

s, ßs, 7
S; äs, ßs, 7* > , (2.15)

where:

Xß is the sensor position in earth coordinates.

Xg is the sensor velocity in earth coordinates.

ctg and ä^ are the rotation and the rotation rate of the sensor about the z -axis,
respectively.

ßg and $s are the rotation and rotation rate about ys, respectively.

7^ and 7^ are the rotation and rotation rate about xs, respectively.

The angular position state of the sensor is thus (a|, /?|, 75) and the rotation rate

is (äf , ß§, j§).

18

"^ y. E

KE

Figure 2.2. The sensor coordinate system (xs, ys, zs) is a translation of the earth-centered
coordinate system (xg, Vß, Z

E) by tne displacement vector Xg-

When the state of a sensor At seconds into the future is needed, we proceed as before
for the position state Xg of the sensor. For the rotation state, analogously,

af (to + At) = af (to) + At a|(i0) .

/?f(t0 + At) = /?f(t0) + At/3f(to).

7f (to + At) = 7f (t0) + At Tf (t0) . (2.16)

The sensor parameter TC
S
 of Eq. (2.14) has four principal components:

K
S
 =<FOV,T),AD,TD >, (2.17)

where

FOV is the sensor field of view, FOV =< es, 9s-, 4>S >•
es is the sensing direction (unit vector).

rj is the detector conversion factor (electrons/particle).
<j>S is the sensor elevation angle.
9s is the sensing angle (spherical).

AD is the effective detector area.
Tr) is the detector response time.

2.2.1.1.5. The Overall Measurement Process X. The DEW platform
collects information from on-board and external sensors at sequential times {tj. : k =
1,2,...} determined by a given update rate. At any such time tfc, the decision maker

19

DM receives state summaries from trackers and sensors via the measurement functions
hT, hs, hD, and hE. In this report, the first three functions produce mean and variance
estimates of the positions and velocities of targets, sensors, and the DEW platform,
and hE generates the mean and variance of the background and environmental noise
processes. The overall measurement process of Eq.(2.6) is thus simply a vector process

X(XT,XD,XE,XS) = [M,*T) :t = l,...,|J|},

(^,aD)^E,aE),{(»l°f) :i = l,-..,|J|}] , (2.18)

where 2* was conveniently omitted, and the meaning of symbols is obvious.

2.2.1.2. The Decision Maker DM. In this report, a decision maker is a pair
DM =< d,L> where d is a decision rule that maps realizations X(u>) of the observa-
tion process XR into actions a £ A, and L is a loss function that assigns to each action
a and state of nature cv 6 0, a (random) cost or loss L(LJ, a) = c € C. Referring to the
observation process X described in Section 2.2.1.1, we assume that the decision maker
must infer all information about the parametric structure of targets, sensors, and the
environment exclusively from state measurements or from prior knowledge.

2.2.1.2.1. The Decision Rule d. Each action taken by the decision maker
specifies a target sequence, an allocation of dwell time and dwell energy, targets to
be rejected or ignored, and other platform commands discussed earlier. For both the
midcourse and the boost phase, the decision rule d is a complex algorithm that has no
succinct mathematical representation. As we describe in later sections, target sequences
are chosen by first ordering targets in accordance with their deadlines and release times,
earliest deadlines first. If a sequence is not optimal, correction methods are applied
until an optimal sequence is found or until a maximum computational time limit is
reached.

During the boost phase, dwell times are obtained from leakage probabilities computed
in an outer optimization loop, each probability providing a unique target dwell time.

When all deadlines cannot be met or under certain conditions where time lines must
be shortened, some targets may have to be rejected or ignored. This is accomplished
by applying a rejection criterion discussed in detail in Section 3.2.1.

As a matter of notation, sequences are viewed as permutations (reorderings) of some
index set (Loomis and Sternberg 1968). Consider the set II = {TT : I —* 1} of all
permutations of the index set I. A permutation -K G II reorders the index set I in such
a way that index -K {%) is placed in position i, and K~l{j) is the index which was in
the jth position prior to the permutation operation. More generally, consider a job or
target sequence T(/) =< Ti,..., T,-,..., T\j\ >. Then the application of permutation -K

to I produces the reordered sequence

T-ir(I) =< Tx{1),... ,T„(0,... ,TX(|7|) > , (2.19)

20

which we denote by TT, and where

Tvn\ is the target in the first position after permutation,
Tw,) is the target in the zth position after permutation,

TTnn\ is the target in the | I |th position after permutation, and
T is the function assigning names or labels to the indices in TT(I).

Similarly, we denote by TT-itj\ the target which was in the 7th position prior to the
permutation operation.

When some targets are rejected in accordance with some rejection criterion, only
a subsequence of targets is prosecuted, and an order-preserving subsequence mapping
r : I —> I' C I is induced on I (Apostol 1974). This mapping takes any sequence into
a subsequence < sr^,..., «SVfl/'D >• The new target sequence is thus

r.7r.r(j) =< rT(r(1)),..., TT(T{im > . (2.20)

We shall denote subsequences of TT by T£ unless the rejection criterion must be explic-
itly included, in which case we denote them by Tv.r. We also denote a set of rejected
targets by % and its index set by IT.

With this notation, we can now succinctly describe each action of the decision maker
as a triple

a=<ir,tD,Ir>, (2.21)

where
■K specifies the sequence chosen by DM,

tD specifies the dwell times for all targets, and
Ir specifies the set of targets rejected by DM.

2.2.1.2.2. The Loss Function L. When the environment of an engagement
is described by a "state of nature" u> € Q,, each action a G A incurs a random loss
L(u,a) € C Losses are thus random variables because they depend upon random
engagement conditions.

But the losses also depend upon when they are incurred, and they are therefore also
sequence-dependent. If a deadline is missed, for instance, a target may have to be
ignored, so the earlier a target can be processed, usually the better. But if a target
is scheduled too early, its release time may be violated, and additional losses may
arise. Also, the probability of neutralizing a target depends on when the target is
engaged. In some cases, waiting for a target may even improve weapon performance.
Considering that the evaluation of leakage risk requires that losses be multiplied by
their probability of occurrence on a target-by-target basis, respecting the order in which
losses are incurred is essential, and losses must be expressed as sequences of losses.

As outlined earlier, each action a € A and state of nature u> € 0 result in a set
% = {Tx(,) : i 6 IT} of rejected targets and in a set Tm = (Tx(,) : i € Im} of missed

21

targets. Observe that this is not a probabilistic statement: the specific action and state
of nature together cause % and Tm for sure. To find the probabilities that targets are
either rejected or missed, we need to know the distribution of the states of nature, and
these are discussed later when miss probabilities (pM) are derived.

To define the sequential loss function L, we associate with each target T,- € T a fixed
value

Vi = V(Tt) = aiV°(Ti) € V (2.22)
where

V°(Ti) is the intrinsic value of T{.
ai is the deadline hardness of Tj.
V is the value space.

Accordingly, if Ir and Im are the (ordered) index sets of % and Tm, respectively, the
loss function produces, for each state-action pair (u>, a), a loss subsequence,

£(w, a) =< Vx{i) : i € Jr(w, a) U Im(a;, a) >, (2.23)

indicating the order in which rejection losses (Jr) and miss losses (Im) are incurred.

Expressed as a full sequence with |7| terms,

L(u,,a)=<yT(t);t;yu;,a): i = 1,..., 11\> , (2.24)

where
^X _fl, »G/r(w,a)U/m(w,o)l

""(') \ 0, otherwise J

In Sections 2.2.1 A and 2.2., this loss function will be combined with the probabilities
on IT, I LI and V^u) to obtain an expression for the overall risk.

2.2.1.3. The Feasible Set F. In complex problems such as the TSP there is
no convenient closed-form definition of the feasible set F. Usually, a test function is
defined, together with a feasible region. A solution is then feasible if the value of the
test function for that solution falls in the feasibility region.

Two major constraints are considered in this report—time constraints and resource
constraints—and their test functions are called the target completion time function (fc)
and the energy consumption function (/#), respectively. Accordingly, we represent the
feasibility of TSP as a fourtuple:

F=<CT,fc;CEJE>, (2.25)

where

22

CT is the deadline and release time constraint,
fc is the target completion time function,
CE is the resource (energy) constraint, and
fß is the energy consumption function.

2.2.1.3.1. Time Constraints (CT,fc)- Two time constraints define a
window of opportunity during which a target must be addressed. First, targets may
not be processed before they are "available". A target may be unavailable, for instance,
before breaking through a cloud cover. The battle manager may have several additional
reasons why a given target should not be addressed by a platform prior to some time.
Second, targets must be processed by a given time called the deadline.

Mathematically, these time constraints can be simply stated as a

completion constraint: tc^i) < ^(i), i'■ = 1, • • • > \I\ > &&& a (2.26)

release constraint : <CT(«)
— *x(i) — r:r(0, (2.27)

where dx(t) is the deadline for target T^), and rx(l) is its release time. Observe that
the release constraint is implicitly included in the expression for completion time (see
Eq. (2.30)).

Given the definition of sequences and permutations presented earlier, the target
completion time function is a mapping

fc : T x n x R+ x R+ -> R+ (2.28)

that assigns to each target T; € T, permutation TT € II, dwell time tD € R+, and release
time r G R+ a completion time /c(T,-,7r, t , r).

Note that completion times also implicitly depend upon the platform V, the envi-
ronment £, and the sensor set S. We defer to later chapters the explicit derivation of
this dependence; in this chapter we limit our discussion to the situation where T>, £,
and S are assumed fixed.

Consider now the ordered set of completion times CTW —< *CJr(i), •■-,*«[■(«')>•••'
tCTnm >, where iOT(,) is the completion time of target T^ under permutation TT.

Then fc is a recursive function defined as follows for all TT € II:

*«r(i) = /c(*cx(i), *) = r7r(i) + *f(i) ' (2-29)

where

rTn\ is the release (availability) time of the first target TT^, and

23

^fm *s *^e dwell ^me °f the firs* target Tv^y

Inductively: for i = 1,2,..., | i" |,

*«r(i) = /C(*X(I>T)

={»-,(.-),*«r(i-i)+<5:o}+*?(0' (2-3°) = max

where

rTti\ is the release time of target Tvuy

i^/-s is the retarget time from TT^_u to T^

tCv(i-i) 1S the completion time of Tx(,_i).

i^/s is the dwell time of TT^y

Note how release times can determine completion times: regardless of the completion
time of the previous target and the retarget time to the current target, processing of
the current target may not start until it is ready or available.

The calculation of dwell times tQ^ depends upon physical parameters and variables
that are discussed in a later section; retarget time computation is discussed next.

2.2.1.3.1.1. Retarget Times. The retarget time t^U from Target Tvu_^\ to Tar-
get Tvu\ is determined by the state of the two targets at the completion time tcx(,_i) of
^V(»-i) and by the dynamical properties of the DEW retargeting hardware. A typical
retarget timeline is shown in Fig. 2.3 where a familiar second-order behavior of the
platform hardware is portrayed.

In response to an angular retarget step input u(t), the time required to settle to
within e of the location of Tvu\ is

jr(t') = sa* ' ^react T *rise i Tstt ■> (z.olj

where the meaning of the variables is obvious (Kuo 1975). More conventionally,

t-x(i) — tsat + tset 5 (2.32)

24

\

System
response

C(t)

>- timet

Figure 2.3. Second-order non-linear approach to estimating DEW retarget time showing

unit STEP response time.

where

tSat is the saturation time, and tsat =
u (t) - uii7,

Cmax

Cmax is the maximum slew rate,
u\in is the maximum input before the onset of saturation, i.e., the maximum

linear response input,
,. • , \He)\

tset is the settling time and tset =
O-UJT

8 is the damping constant, and
u)n is the critical frequency.

More compactly,

D _ max{u-uun,0} \ ln(e) \

*M Cm.a.T. crun

(2.33)

A slight comphcation arises due to the fact that a DEW is a composite structure
consisting of three major mechanical components: the main body (MB), the forebody
(FB), and the fast steering (FS) subsystem. When angular displacement commands
are sufficiently large, all three subsystems may have to be slewed, and the retarget time

25

is then also a composite function

R -~-{*W *?**■)*(*-*T)' «W^C*- e-T)l (2-34) C(i)=ma:r

where

^PS^O' *?3*(t)> *£sx(i) axe the fast steerinS> forebody, and main body retarget
times derived as in Fig. 2.3,

0, is the angular distance from Tff(,-_i) to T„.(,), and

ö£fx, 0£fx are the maximum displacements of the fast steering and
forebody subsystems, respectively.

The step function U(x) is important here since no forebody or mainbody slew is re-
quired unless the input command 0; exceeds the fast steering (respectively the forebody)
motion limits.

Considering that all the targets are moving and that a scheduling algorithm must
estimate the state of targets some time far into the future, the computation of the
angular separation Q{ deserves further comment. Referring to Fig. 2.4 where a DEW
platform D is located at position DE - (DE,X, DEtV, DEjZ) in an earth-centered
coordinate system (xE, yE, zE) as shown, the angular separation between T,_i and T;
in platform coordinates (xp, yp, zp) is

*=cos_i (n/'-'ii'fy n) -cos" (wv). (2-») VII Xi-l,P \\\\Xi,P 11/ v '
where e,_i p and e^p are the corresponding unit vectors. Relating this to the earth-
centered coordinate system,

Xi-u = R(Xi,E - DE), (2-36)

where
R is the rotation matrix from earth to platform coordinates,

Xi E is the position of Ti in earth coordinates, and
DE is the position of D in earth coordinates,

and similarly for Ti-i.

In practice, we use the distance ef = ef^ — ef as a guide to estimate 0;, and we
define

, II 4 II rad , || ef ||< 0.1745
6i = { . (2.37)

cos-^e/Lj'e/Vad , || ef ||> 0.1745

26

>x,

Figure 2.4. Computing the angular separation 0, between targets T,_i and T, in earth

coordinates.

To predict the position of a target At time units into the future from some reference
time to (initiation or handover time), we extrapolate initial positions (xo, yo, ^o) and
initial velocities (x0, yo, io) along a straight line trajectory or along a constant-radius
circle centered at the earth, as discussed in Section 2.2.1.1.

2.2.1.3.1.2. Dwell Times tD. The target interaction physics from which dwell
times are derived are very phase-dependent since the interaction mechanisms involved
in the boost phase differ significantly from those in the midcourse phase. Generalization
is thus not very useful, and we defer to Chapters 3 and 5 any detailed derivations of
dwell times for the boost phase and the midcourse discrimination phase, respectively.
An important fact used in the remainder of this chapter, however, is that there is
one-to-one relationship between dwell times and miss probabilities (nondiscrimination
probabilities in the midcourse phase), so that, once miss probr bilities (pM) are specified,
dwell times are uniquely determined.

2.2.1.3.2. Resource Constraints (CE, /#). Various limited resources are
consumed by a platform during an engagement, and a careful resource management
strategy must be included in the target scheduling algorithm to avoid reaching resource
limits at mission-critical times. To accomplish this, we use a local resource consumption
function

E° :TxUxR+ -* R+ (2.38)

27

which assigns to each target T; € T, permutation n g II, and dwell time tf € R+, the
quantity of energy E°(Ti, 7r,t;) consumed during the retargeting from Tx(i_i) to T„.(,)
and during the dwell time tf on target TU,-).

The total consumption of resources is recursively described by the cumulative re-
source function

/ft = 53JB°(Ti,7r,<f), (2.39)

recursively defined by

fEt=fEi-1+B?(Tj, 7T, tf)

^fE^+E^t^ + E0^), (2.40)

where

E (iff,-)) is the quantity of resources consumed during retargeting time t^uy

E (t^..A is the quantity of resources consumed during dwell time t^,^

The energy constraint is now simply:

For all t = 1,..., 11\, fEi < Emax , (2.41)

where Emax is the total amount of resources available.

2.2.1.4. The Optimization Criterion H. "Expected risk" has been found in
practice to best reflect the degree and uncertainty of loss in complex large-scale decision
problems not dominated by rare events (Ferguson 1967, Berger 1980). As we mentioned
in Section 2.2.1, risk may be denned using an optimization criterion

H =< L,VL,Z E > , (2.42)

where

L is the loss function.
Vl is the leakage •probability function.

£ E is the summation-expection composition operator on C, producing for each loss
sequence L(w, a) € £, the sum of all the expected rejection and miss losses
associated with the terms of the sequence with respect to the probability 4
measure VL-

The loss function (L) was defined earlier in Section 2.2.1.2.2. The probability that
a target leaks through (VL) is essentially determined by the lethality of the DEW, the
hardness of the target, the environment and time of the engagement, the probability

28

that the target is correctly identified, the dwell time allocated to the target, and dead-
line constraints. As before, we assume that the DEW (D), the environment (E), the
sensors (5), and the constraints (C) are fixed during a single target scheduling cycle,
and all probability assertions and calculations are thus conditional to D, E, S, and C.

We assume that a target leaks through if, and only if, it is rejected (ignored) by
the target scheduler, or it is missed by the DEW, or it is misidentified. The physical
conditions that give rise to these three forms of leakage are represented in the same
space ti (states of nature) discussed in Sections 2.1 and 2.2.1.1. The probability of
leakage p depends upon these three leakage modes as follows.

Let TO, R, and M stand for target misclassification, rejection, and miss, respectively.
Then

pL = prob (W V RV M)

= 1 - prob (ID AR A M)

= 1 - prob (M \IDAR)pvob (ID)prob(R)

= i" (PF) \IDAR)PIDPR (2-43)

where pjf = prob (M), pID = prob (ID), and pj = prob(Ä).

To separate the contributions to pL made by the miss probability pM and the rejection
probability pR, Eq. (2.43) may be rewritten as

h = PR + i1 ~ (PS \JD>io\ PR ■ (2-44)

Equation (2.43) shows that a target leaks through if, and only if, it is rejected,
misidentified, or missed when it is correctly identified and not rejected.

The target ID probability p is derived from a Bayesian classification process that
will be discussed in a future report (Corynen 1993). Because target rejection is a
complex heuristic optimization process, no analytical expression for the rejection prob-
ability p can be derived.

The conditional miss probability (pM |j£,A^) is obtained from a statistical comparison
between weapon lethality and target hardness, as follows:

PM(TT(I)) = prob (tfx(0(e£w, t„(0> "T) > HQD,tc^ "Di *?(.•))) ' (2-45)

where

29

Hvtj\ is the hardness of target T^u) whose state is Q^a) at completion time £C7r(;),

when the random state of nature (environment) of the target is w .
L is the lethality of the weapons platform D whose state is Q at time tcx(,),

when the dwell time is tQ* and the platform state of nature is uD.

Using Eq. (2.44), we may summarize all this in terms of a general objective function,
as follows:

The total leakage risk is

\I\ \I\ \I\

RL = J2
y*u = E v**i+E Vi I1 - (PU \iDpiDi H-

»=i »=i «=i

= Kr + Tlm (2.46)

where
M

7lr is the rejection risk, and 7Zr =)> ViPRt >
i=l

w
7£m is the miss risk, and 7£m = J^ V;[l - {pjj |/Z).)p/Z)Jpß.,

i=l

Li is the loss incurred if Target i leaks through, and
pi{ is the probability that Target i leaks through.

The expected scheduling leakage risk can now be expressed more explicitly as the
sum of a rejection risk 1ZT, an identification risk HID-,

and a miss risk Tim, as follows.
Let Ri be the event "Target Ti is rejected," Ri its complement, and let p(L{ \E) be
the probability that Target Ti leaks through condititional to the occurrence of event
E. Then the expected loss for a single target T; is

Lip(Li) = LiP(Li taM-Ri) + Lip{Li I^Xä,-)

= Lip(Ri) + Lip{Mi)p(Ri), (2.47)

where p(Mt) = p(Li \-s.), the probability that Ti is missed if its interception is at-
tempted. This probability will also be called the miss probability.

Successful target interception strongly depends upon the target identification power
of the sensors observing an engagement. While target rejection is assumed unaffected
by the ID process, we assume that incorrectly identified targets leak through. If IDi
is the event "Target Ti is correctly identified", and IDi is its complement,

Lip(Li) =LiP(Ri) + LiP(Mi \Wi)p(IDi)p(Ri)

+ Lip{Mi \IDi)p(IDi)P(Ri).

30

Since p(Mi \j^.) = 1,

Lip(Li) = Lip(Ri) + LiP(7Di)p(Ri) + LiP(Mi \ID.)p(IDi)p(Ri), (2.48)

and the total leakage risk for a sequence -K is simply the summation of Eq. (2.46) over
i (slightly rewritten):

w m
KL{d) = 5>iPr(Tx(f-)) + YsUpwiT^l -pr(TAi)))

i=\ i=\

171 / N

i=l
= ^(d) + ^ji?(d)+^m(d) (2-49)

where d = (cfo, d*, dT), and the meaning of the symbols is obvious from earlier
definitions.

2.2.2. The Optimization Problem

In this section, we present a general discussion of the schedule optimization problem.
First, we introduce the problem in general terms. Then we outline the major steps of
our approach.

2.2.2.1. Introduction. The Target Scheduling Problem (TSP) consists of pro-
cessing a collection of targets in accordance with a schedule that minimizes the target
leakage risk, subject to deadline, release time, and energy constraints. A target leaks
through either because it is rejected by the platform scheduler, or it is missed by the
DEW during processing. Only when a deadline cannot be met must one or more targets
be rejected. From an expected risk perspective, rejection losses are worse than miss
losses because they occur with certainty when deadlines cannot be met, whereas miss
losses are weighted by their probability of occurrence. Consequently, obeying deadlines
is the major objective of our scheduling method, and the resulting algorithm was called
the Deadline Driven Target Scheduling Algorithm (DDTS).

Observe that the absence of deadlines does not eliminate leakage risk altogether,
even though the schedules may allocate arbitrarily large dwell times to the targets.
An approach dedicated to avoiding tardiness at all cost may not do well in situations
where deadlines are loose or soft (low value of deadline hardness factor a). For some
practical scenarios, in fact, waiting for a more propitious geometry may considerably
reduce the risk, and any method designed to process all targets as quickly as possible
will be suboptimal for such cases.

Recall the mathematical setting developed in earlier sections. Given a set T = {T; :
i = 1, ..., 111} of targets whose values are V;, i = 1,..., 111, a target observation

31

process X = (X\(UJ), ... ,Xn(uj)) on the states of nature u € ft, with values xn G 1Zn, a
set A of admissible actions, and a decision function d : 1Zn —»• A For every observation
or scenario xn(u) G 7?.", d produces a decision or action d(xn(u>)) = (t , TT, TT) = a €
.4. Each decision a incurs a loss L(a;,c?(xn(a;))) = < "^(tjXw,-)) : i = 1, •••, I -f |>
when the true state of nature is u. The TSP is to find a decision function d* that
minimizes the total expected leakage risk specified by Eq. (2.49), and subject to the
constraints CT and C introduced earlier.

The apparent simplicity of the risk function %i is quite deceptive because the TSP is
considerably more complicated than familiar traveling salesman or job shop scheduling
problems. First, due to platform and target motions and the associated time-variance of
parameters like DEW lethality and target vulnerability, the TSP is a dynamic problem.
Potentially every permutation it € II may have to be tested. Second, deadlines and
release times may require that carefully selected targets be allowed to leak through since
time window constraints may not be met otherwise. The optimization procedure may
therefore be required to test every subset TT C 1 of targets to find those targets which
should be ignored. Finally, since dwell times strongly affect the target completion times
and probabilities of leakage, their selection is an important part of the optimization
procedure. Because each target typically receives a different dwell time, every dwell
time vector tD £ II Ä; may have to be tried. Observe that the sensor architecture

and the torque shaping commands are not currently subject to optimization in our
framework.

Relating this to the canonical optimization problem of Section 2.1, the action space A
thus consists of an uncountably large collection of triples (i , TT, Tr), each of which may
have to be tested to find the minimum leakage risk. Since, for any choice (i , x, Tr) and
real number R°, the validity of 1Z(tD, z, TT) < R° can be "recognized" in polynomial
time, TSP is clearly in the class of Nondeterministic Polynomial (NP) Problems.* But
since the standard traveling salesman problem polynomially transforms* to TSP, all
problems in NP transform polynomially to TSP, and the Target Scheduling Problem
is also NP-complete. This is not surprising, since Savelsberg (1984) showed that even
finding a feasible solution to the non-stochastic and static traveling salesman problem
with time windows is iVP-hard. The 0(n2) spanning tree problems also become NP-
hard when time windows are introduced (Solomon 1986).

Conventionally, complex problems like the TSP in this report are addressed with
Monte Carlo simulation, queueing networks, or Petri Nets. Such methods are excluded
in most real-time situations, however, and only heuristic optimization approaches will
succeed in estimating the minimum leakage risk within acceptable bounds of accuracy
and algorithmic complexity. The completion time function and the energy consumption
function are of little assistance since they are both recursive. Because the objective

Papadimitriou and Steiglitz (1982).

32

function K is therefore recursive as well, its internal structure cannot easily be exploited
for computational purposes.

2.2.2.2. Optimization Approach. There are no ready answers to the TSP,
not only because the problem is NP-hard, but also because it involves real-time com-
putational challenges peculiar to target scheduling. Many useful results in scheduling
theory and discrete optimization are available to solve related problems or special cases
of TSP, and every reasonable effort was made in this report to exploit past work by as-
suming that limiting cases of TSP converged to problems for which analytic solutions
do exist. This minimized the risks associated with any inaccuracies or unsuspected
computational traps.

Our real-time approach minimizes the Conditional Risk TZL (dp, dr, dT \xn) given the
observations xn, the standard extensive form of Bayesian analysis where posterior loss
is minimized conditional to the data.* This is equivalent to minimizing the conditional
risk for every xn G Rn and, since a sufficient condition for minimizing an integral is
to minimize its integrand over its entire range, it avoids the integration required to
calculate the overall unconditional risk,

nL(dDl dx, dr) = [KL((dD, dT, dT) \xn) f(xn) dxn. (2.50)
JRn

In this report, we shall thus consider only the conditional risk, expressed in terms of
the actions resulting from the decision triple d and the observation xn:

KL((dD, dr, dr) \Xn)=TlL{dD(xn), dT(x
n), dr(x

n))

= TlL\aD, <*„-, ar) . (2.51)

Observe that xn does not provide measurements on the entire sample space £1, and
some probability computations are still required. The space CtT underlying the target
parameter vector irT (Eq. (2.7)), for instance, cannot be sampled during algorithm
execution since parameters like Target Hardness are unobservable in real time. This
also applies to the platform sample space ß .

The first step in minimizing multi-dimensional functions is to look for mathematical
structure such as convexity, monotonicity, and separability. Considering separability
first, no separation of the risk function TZL is possible because of the strong interdepen-
dence of the decision variables. Considering aT next, we reject targets on the basis of
Marginal Risk Reduction whenever deadlines cannot be met. Therefore ^(ap, ax? <*r)
is monotonic only in the total value of the set % of rejected targets and not in aT itself
since the ar's are sets with no strict ordering.

* Ferguson (1967); Berger (1980); Duda and Hart (1973); Jain (1989).

33

Next, consider dwell time allocations aj). As dwell times are increased, the proba-
bility of successful target processing increases, and conversely. But each target could
conceivably be allocated a different dwell time or leakage probability pL, hence tD or
ap is actually an n-dimensional vector whose optimization would be impractical in real
time. To explore the possibility of allocating just a single common dwell time to all
targets, we note that encouraging tests have indicated that leakage probabilities tend
to bunch around a common value during such as optimization. One explanation for
this bunching effect is that our rejection schedule (see Eq. [2.52]) severely penalizes
targets with a high tD value, but the expected risk criterion also strongly discourages
retaining targets with a low pR value.

While the computational benefits of assigning a common pK to all targets are enor-
mous (the dimension of the optimization problem is reduced by a factor of \I\), forcing
an increase in p for all targets may significantly increase their dwell times and may
cause additional target rejections, thereby obtaining only a suboptimal solution. Con-
sider for instance a high-valued target that is close to the DEW, requiring considerably
less dwell time than the other targets to achieve a given pK. From a marginal benefit
perspective it would be desirable to allow increasing the pK of the valuable target, while
retaining—or even decreasing—the p of the other targets, something that the DDTS
algorithm does not allow. Note however that the entire scheduling process is recursive:
targets rejected at one time will reappear again as unprocessed targets at another time
and will be allocated an appropriate amount of dwell time as soon as high-priority tar-
gets have been processed. Therefore, in spite of the remote possibility of producing a
suboptimal schedule, the dwell decision function do assigns to each target an equal pL.
As a final comment about the structure of dj), we show below that, except for minor
perturbations, TZi(aj), ax, aT) is also convex in ap.

No natural ordering of the actions a* G II exists for TSP Thus TZi cannot be
monotonic or convex in aT, and a combinatorial heuristic will be required to find
the optimal sequence TT*.

A simplified flowchart of the DDTS algorithm is shown in Fig. 2.5. Measurement
inputs are obtained from on-board or from external sensors. Other inputs include
external handovers, constraints, and objectives. The measurements are samples xn €
Rn of the measurement process X discussed in detail in Section 2.2.1.1. Constraints
are specified by the feasibility F =< CT, fc', C , JE > defined in Section 2.2.1.3,
and objectives are specified via the optimization criterion H =< L,V, T,E > discussed
in Section 2.2.1.4. One input not discussed thus far is the scheduling horizon i™01,
the maximum time into the future for which targets must be scheduled. This input
parameter is needed for two major reasons. First, the complexity (i.e., running time)
of DDTS is a polynomial in the quantity j X j of targets, increasing significantly as 111

34

*-B
eS 60
. s-s

to OS
•a "ö 2 <u

CD S -a •a u
5H *Q

>5S O

oQ
■o

*

C
om

pu
te

in

iti
al

in

te
r-

cl
as

s o

s

e o

£

8

I
" 8
8 S
2 ° ■

S g C c«
3 .5 4> <D
& «O TO CO
S es > «
O <u -a VJ

8 < k •a
Is, u
CO
£
O

-11 ^
° 8

E a
•c o
U)

CO
H
Q
Ö
M

"3

■s
V
BB
I*
es
H
C
ej

Q
i

0)
#c
T5
es

Q
V

I* es

O
G
-O

ft
£

35
«/>
c*
u
i>
s
ex
£

35

is increased. Second, the reliability of predictions or estimates decreases considerably as
the horizon is increased. Although additional experiments may be needed to determine
a best value for t™ax, currently a value of 100 seconds is used.

In our decision-making setting, DDTS is viewed as a decision maker that takes obser-
vations xn{u) into actions a = (ap, aT, ar) € A, thereby incurring a loss L(u},a) (see
Section 2.2.1.2.). Only actions ap and ax produce an output—dwell time tD and target
sequence 7r, respectively. When platform jerking is a serious problem, specific retarget-
ing states are produced to minimize jerk, but this is not considered in the first version
of the algorithm. (See Section 3.4 for a derivation of smooth command schedules.)

Decisions are made to minimize the overall objective function TIL^D, dm dT) of
Eq. (2.48), subject to the feasibility constraints F. The complexity of the optimization
problems rules out an analytical solution, and our heuristic approach consists of three
nested loops, as shown in Fig. 2.5. Before executing these loops, the algorithm is
initialized by calculating the deadline equivalence classes and by constructing an initial
tour through these classes. Two targets belong to the same class if they have the same
deadline and release time. Whenever two targets have the same deadline but different
release times, the one with the earliest release time is ranked first.

The initial tour KQ through all the targets is found in two steps. First, a shortest
tour within each of the equivalence classes is found, one for each class. These are
the internal tours. Then a global tour is constructed where classes are considered as
single points and class elements are included in accordance with their internal tours.
Tour construction is done using the Farthest Insertion Algorithm*, and, in global tours,
targets in an equivalence class precede those in another class if, and only if, the deadlines
of the former precede those of the latter. Observe, however, that this initial ordering
of targets may later be disturbed when tour corrections are needed to meet deadlines.

The execution of the three loops may be viewed as occurring sequentially, with
sequence selection first, then target rejection, then dwell time optimization. Starting
with an initial dwell time t^ and tour 7To, the first operation is to test completion
times tc against deadlines. If no deadlines are missed up to t™ax (horizon limit), no
improvements to TTQ are needed and no targets are rejected, and all that remains is
to optimize dwell time tD. If one or more deadlines are missed at some time t^, tour
improvement methods such as 2-opt* are brought into action until no more deadlines are
missed, until a maximum number nx of tour improvement attempts have been made,
or until an optimum tour 7r* has been found. During tour improvement, the rejection
risk 1ZT is minimized by sufficiently reducing the completion time of important targets
by varying the permutation it 6 II. Observe that not all completion times need to be
minimized, only those that would lead to important targets missing their deadlines. In
all but the tightest scheduling scenarios, only a few corrections need to be made since

* Lawler et al. (1985); Norback and Love (1977).

36

few targets would miss their deadlines. Note also that the rejection risk will often be
"flat" in the 7r variable because many sequences will yield the minimum risk TVL.

If some deadlines are still missed, some targets must be rejected. This is accomplished
by rejecting targets whose removal produces the largest marginal risk reduction, using
the rejection criterion

a-p*ID-L*
r-t°*+At*' (2"51)

where

a is the deadline hardness (a € [0,1]).
p*ID is the probability of correctly identifying the target type, conditional to

deciding its type is 9*.
L* is the expected target loss conditional to 8*.

tD is the target dwell time conditional to 6*.
AtR is the retarget time earned by skipping the target.

While the obvious strategy is thus to skip a target whose ratio is least, note the
interesting circumstance where such a least target precedes an "early" target, one
where waiting occurs. Recall that the processing of a target cannot be started before
its release time. Hence there is no point in skipping a target that precedes an early
target since that will simply increase the waiting time at the early target, and this
consideration is included in the DDTS algorithm. While there is no analytical proof
that this rejection scheme is optimal, two important limiting cases have actually been
shown to be optimal. With the quantity of late targets as a risk measure, Kise, Ibaraki,
and Mine (1978) have shown for the static case that the numerator of Eq. (2.51) is the
best rule. In the standard "shortest-job-first" approach, Smith (1956) and others* have
verified that, when all tasks (targets) have the same value, then r of Eq. 2.50 is the
also the best rule. Additional work by Lawler (1971) and others contains significant
special cases where the ratio of value to time is an optimal ranking criterion.

When the optimal tour and rejection have been found, the outer loop is re-entered,
and a new vector of dwell times is attempted, until the overall leakage risk is minimized.
Recall that dwell time vectors tD are obtained from common values of pL for all targets
using a relationship whose boost phase version is derived in Section 3.3.1.4. This
optimization process can be explained by using just two targets whose values are V\
and V2 and whose deadlines are d\ < d<i, respectively, as shown in Fig. 2.6, where

PK =
1
-PL-

As p is increased from 0, the total risk decreases as (1 — pK) (Vi + V2) until the first
deadline di is exceeded, and the risk jumps to V\ + (1 - PK)V2- Additional increases in
p further decrease that risk until the second deadline is violated, and both targets leak

* Abdul-Razaq et al. (1990); French (1982); Baker (1974); Vickson (1980a,b).

37

through. When the first deadline is violated, the risk therefore jumps by V\pK before
dropping to its minimum value V\ + (1 — PK)V2 associated with the maximum dwell
time for both targets—i.e., when tci = d<i.

For the general multi-target case, the risk function therefore may have several local
minima, technically as many as there are targets, and this could severely complicate
the optimization process. But this is a potential problem only for sparse threats, since
for large threats the jumps are relatively very small and can be ignored with most
optimization algorithms by setting the tolerance or error coefficient sufficiently high, as
we have done using the Brent Algorithm (Press et al. 1988; Brent 1973). When threats
are in fact sparse, deadlines are also less stringent, and there is thus no significant
approximation problem in either a target-rich or a target-poor environment.

To conclude our discussion on optimization, recall an earlier discussion of scenarios or
threats for which deadlines were very loose or very soft, and where an early processing
of the targets incurred a large risk due to an inconvenient threat geometry in which
threats are far away from the DEW platform. In cases such as this, delaying any
action can often improve the overall leakage risk, and such delays can be introduced
by simply increasing the common pK, because that also increases the dwell times and
the resulting completion times. This may occassionally lead to minor violations of the
energy constraints; however, in such a case, a waiting time should be introduced, but
this is not done in the current version of DDTS.

Expected
leakage

risk

pKtoo low ->|<-PKtoohigh

tc=d2
>PK

Figure 2.6. Risk decreases with increasing p until the dwell time causes target tardiness.

38

3. Scheduling Theory for the Boost Phase

In this chapter, we address the Target Scheduling Problem in greater detail by fo-
cusing on the Boost Phase. In Chapter 5, the boost phase solution will be extended to
the more complex midcourse discrimination problem.

When using the objective function of Eqs. (2.49) and (2.50), and as illustrated in
Fig. 2.5, the problem suggests a decomposition into three subproblems:

1. Finding an optimal sequence 7r* £ II .

2. Rejecting targets.
n

3. Computing an optimal dwell time vector tD € Jj[Rj .
i-i

While it is clear that these subproblems are generally not independent, such a de-
composition has important benefits because significant special cases of the TSP often
reduce to just one of these subproblems. The strong resemblance to standard problems
in combinatorial optimization was an additional motivation to develop connections to
the theoretical optimization business in order to benefit from the considerable work of
others. We therefore relate each subproblem to the combinatorial optimization liter-
ature to show how others have addressed similar problems. Then we show how the
solution to each subproblem is combined into a solution to the entire target scheduling
problem.

Considering the important trade-off between speed and accuracy, perhaps a more
important reason for this three-part decomposition is the admission that we have been
unable to derive tight upper and lower bounds for the accuracy of the DDTS algorithm.
Given that bounds are available for certain versions of its subproblems, the algorithm
was designed to agree with those bounds on these subproblems, and we are currently
pursuing an indirect approach where global bounds are derived from these "subbounds"
and from structural information relating the subproblems.

To provide a slightly different perspective for discussion purposes, the DDTS algo-
rithm may be viewed as consisting of two major nested optimization loops, a time
optimization loop and a leakage probability minimization loop, as shown in Fig. 3.1.
This figure is a further simplification of Fig. 2.5 and shows the inner loop as a local
time optimization loop where both the target sequence and the target rejection set are
optimized. In the outer loop, the leakage probabilities pL = 1 — pK are minimized via
the allocated target dwell times tD(j>).

39

40

Starting with observations xn, an initial decision vector (d°, d®, d°D), a feasibility F
and optimization criterion H, the algorithm iterates over the scalar pK until a minimum
value for the total risk 11 is obtained. Using the BRENT algorithm, the minimum is
reached in very few steps, seldom more than 4 or 5.

In concluding this chapter, we show how the comprehensive threat information avail-
able on the platform can be used to transform discrete target scheduling solutions into
smooth control hardware commands to reduce the acceleration "jerk" inherent in dis-
crete commands.

3.1 Selecting the Permutation II

In some situations, the target scheduling problem reduces to the selection of an
optimal permutation n*, and it is then an ordinary target sequencing problem. This
occurs, for instance, when dwell times tD are either negligible, or constant and equal.
If they are negligible, then any choice of tD is as good as any other since the completion
times tcx(i\ of Eq. (2.24) are then unaffected by tD, regardless of the specific value of
7T or the set TT of rejected targets. If dwell times are constant and equal, then their
contribution to tOT(i) will also be a fixed constant, regardless of 7r or Tr, because the
time function fc of Eq. (2.29) is then unable to detect any reordering or reassignment
of target dwell times. Observe that only in the static case, where distances between
targets are fixed, can the equality requirement be removed, and it then suffices that
dwell times be constant.

When deadlines are not too "severe" and the leakage probabilities in Eqs. (2.42)
and (2.43) are not permutation-dependent, the TSP further reduces to a famous prob-
lem known as the Traveling Salesman Problem (Lawler et al. 1985), which we briefly
describe below. First, we need some familiar definitions.

A directed graph (Roberts 1976) is a pair G =< V, E >, where V is a finite set of
vertices (the "cities") and E C V x V is a set of pairs of elements from V called the
edges or arcs (also "segments") of G. For any edge e = (u, v) G E, u is called adjacent
to v, or the ■predecessor of v, and v is called adjacent from u, or the successor of u. Any
edge (u, v) where u = v is called a loop.

Consider an (ordered) index set I of size |I|. A path ("highway)" in G is a sequence
S =< V{ : i E I > of vertices, each of which is said to be visited by the path. A path is
simple if no vertex is visited more than once, closed if its first element is also its last,
a cycle if it is simple and closed, and complete if it visits every vertex in V. A cycle
is also called a sub-tour, and a complete cycle is a complete tour, or simply a tour. A
tour is thus a path which visits every vertex in V once and only once.

To each tour corresponds a permutation 7r : I —> / of the index set I (see Sec-
tion 2.2.1.2.1). All tours in a graph can thus be examined in terms of all permutations
7T on some index set I. Referring to Fig. 3.2, if the original tour is

41

V7t(7WV3

ens

Figure 3.2. An illustration of the original tour TQ and its permutation T(7T).

To=<t>i,...,V|/|,t;i >, where |/1=9,

then the tour induced by the permutation 7r is

T(TT) =< UT(1), . . . , Vx(i), ..., U,(|7|), UT(!) >,

where uT^\ is the vertex in position i on the tour T(TT).

Next, consider a cost or distance matrix [c,y] whose entry Cij is the cost of traveling
from city V{ to city VJ. The Traveling Salesman Problem is to find a permutation 7r* € II
such that the tour T(TT*) minimizes the cost:

C(T(TT)) = Y^ c*(t>(i+i)
ie/

(3-1)

where 7r(|J| +1) = TT(1).

In target scheduling terms, a minimum-risk schedule is found by simply minimizing
the sum of all retarget times.

42

Of particular interest in this report is the more structured situation where the dis-
tance or cost matrix [c;y] satisfies the triangle inequality,1

Cik < Cij + cjk, {i,j, k} C I, (3.2)

and the symmetry condition,

cij = cjii {hJ,k} C I ■ (3-3)

These relations are obeyed in geometric situations such as those in this report, where
cities correspond to points in a metric space, and distances are computed according
to the metric of that space. Usually this metric will be the Euclidean metric (Loomis
and Sternberg 1968), and the problem is then referred to as the Euclidean Traveling
Salesman Problem (Lawler et al. 1985).

Next, we enter the realm of heuristics with the admission that the conditions required
for the strict applicability of traveling salesman solutions are not frequently satisfied,
and that they are often unverifiable. Even move annoying to those seeking accurate
solutions is the fact that the traveling salesman problem itself has no efficient solution,
since it is NP-hard (Papadimitriou and Steiglitz, 1982).

In spite of these regrettable facts, traveling salesman solutions can provide consider-
able support because it is generally wise—at least during optimization "start-up"—to
minimize the total retarget time, even when dwell times and deadlines are not neg-
ligible. This policy will usually provide a good starting point for optimization and
subsequent corrective steps. Of course, scenarios can be exhibited where the opposite
is true since, in some cases, doing nothing for a while will allow the collection of tar-
gets to move into a more convenient geometry. We have discussed earlier and shall
further discuss below some specific corrective measures that can be taken to minimize
the harmful effects associated with such rare cases. Let us now examine a bit more
closely the process of constructing an optimal tour.

A traveling salesman problem is typically addressed in three steps:

1. Tour initialization.

2. Vertex selection and insertion.

3. Tour improvement.

1 We are ignoring here the notable exceptions where certain obstructions or interference
may prevent or complicate access to some cities (targets) from some other cities. In such cases,
a "shorter" path may be more expensive than a longer one.

43

3.1.1. Tour Initialization

As in most non-linear optimization problems, the selection of a starting point for
tour construction is important. Usually, the starting point is a subtour, a tour on
a subset V' C V of the vertices. There are many ways of choosing such an initial
subtour. In static Euclidean problems, a very successful method is the Convex Hull
Procedure (Norback and Love 1977; Eddy 1977). Recall that the convex hull of V is
the smallest convex set that includes V. Since Flood showed in 1956 that every static
Euclidean traveling salesman problem has an optimal solution that visits the cities on
the boundary of the hull in the same order as if only the boundary of the hull were
traced, this approach is very appealing.

Unfortunately, the construction of even a planar convex hull requires 0(| J|2) oper-
ations (Eddy 1977), and often yields only a small subtour. Hence many vertices may
remain to be connected to the subtour to form a tour on all of V. An additional diffi-
culty is that vertices—i.e., targets—are added and removed from the tour as old targets
are processed and new targets are introduced, and this can considerably slow down the
convex hull construction in Cartesian 3-space. As a result of these obstacles, we chose
a simpler approach where the initial tour consists of only a single randomly chosen
vertex. All of the tour construction work was thus deferred to the vertex selection and
insertion process, which we discuss next.

3.1.2. Vertex Selection and Insertion

Once an initial tour has been obtained, the next step is to recursively select vertices
currently not on the tour and to insert them in the tour until a full tour is obtained. .

There are also several ways to do this. A popular and simple-minded approach is
called the Nearest Neighbor Algorithm:

1. Start with an initial subtour consisting of a single vertex v\.

2. If the current subtour is 5* =< v\,... ,vj. >,k <\ 11, select a
vertex Ujt+i not on the subtour, which is nearest to v^ (with
respect to [c,j]), and add v^+i to the end of the subtour.

3. Stop when a complete tour is obtained.

In the general case of time-varying costs Cy(i), this approach can obviously lead to
catastrophic results. But even in the static case, this myopic approach has the obvious
drawback that, even though all earlier vertices were at least "locally optimal", the cost
C|7|j of the last edge from vu^ to v\ may be very high (see Fig. 3.2). In the Euclidean
case, of course, the triangle inequality prevents the cost from exceeding the total cost
of the previous subtour S*. More precisely (Reingold et al. 1977), if Ni is the tour cost
obtained by the nearest neighbor algorithm, and Oj is the optimal tour cost, then

44

Ni
<\(\W\)1+l), (3-4) 10/

where \x~\ is the least integer greater than x.

While this is only an upper bound, it is possible to construct cases where the tour
cost | Nj | is more than | lg (|I|) times the cost of an optimal tour. So it is clear that
Euclidean structure has been of some help in reducing the worst case error in modeling
the static optimal tour cost.

Many variants and extensions of the nearest neighbor approach have been developed
and tested (Lawler et al. 1985), and, in spite of their low order of complexity—most
are of 0(|i"|2)—they have not performed well without additional corrective steps. One
algorithm, however, the farthest insertion algorithm (FINSA), has almost consistently
done better by contradicting the "greedy" policy of nearest neighbor approaches in that
the city selected for insertion in the subtours is farthest from the subtour. As we shall
see, we decompose the permutation selection problem into the selection of "almost-
static" subtours, tours whose vertices are visited at almost the same time. We expect
that the superiority of FINSA will extend to such tours, and FINSA was thus also our
choice for the TSP discussed here. The first step in the FINSA subroutine is the same
as for the nearest neighbor algorithm. But in Step 2, it chooses the city or vector vj;
not on the subtour which maximizes the distance min {cjk : VJ 6 Sk} from Vk to the
current subtour Sk- Once k is found, the greedy policy is resumed, and Vk is inserted
as the (immediate) successor to u; and the (immediate) predecessor to VJ if, and only
if, vi precedes VJ in the current subtour and the local insertion cost c,& + c^j — Cij is a
minimum.

3.1.3. Tour Improvement

In spite of impressive results in many applications, the best that appears known about
the accuracy of FINSA is that it generates static tours which approach 3/2 times the
optimal tour length. Because farthest insertion does not correspond in any direct way
to any algorithm for generating minimum spanning trees, it has been more difficult to
analyze than other insertion algorithms, and new techniques will be required to derive
tight upper bounds. In many applications including the TSP, the error uncertainty
associated with FINSA is not acceptable and tour improvements must be made.

Most reliable tour improvement procedures are edge exchange procedures (Lawler et
al. 1985) where r edges in a tour are exchanged for r edges not currently on the tour
as long as the exchange still yields a tour and the length of the exchanged tour is less
than the length of the previous tour. Such edge-exchange procedures are referred to
as r-optimal procedures (Lin and Kernighan 1973), where r is the quantity of edges
exchanged at each iteration. A tour is called r-optimal if there is no further exchange
of r edges which can result in a shorter tour.

45

Unfortunately, the complexity of r-opt procedures increases rapidly as r is increased,
not only because all r-exchanges must be tested—potentially an 0(r\) process—but
because every exchange changes the tour, and a new 0(r\) process may have to be ini-
tiated at every exchange. That is essentially why r-opt methods have escaped rigorous
complexity analysis and no tight complexity or accuracy bounds are known. In spite
of this, r-opt procedures have been very successful, even when r only equals 2, and this
is the method we have chosen for the TSP.

To gain some technical insight into the 2-opt procedure, refer to the simple path
of Fig. 3.3 where just one pairwise exchange is shown. The only way to obtain a
simple path after removing edges t\ and es, without altering the terminal nodes T0

and Tj+i, is to insert two new edges, e^ and eio- Observe that the new path segment
(e6, e7, es, e$, eio) from Ta to Tf (shown as a dashed line) involves a reversal from Te

to T\j. This may be very important in time-varying networks where a node such as Te is
reached too late and nodes like Tb are reached early. The skipping of nodes T&, Tc, and
T<£ on the way to Te may obviously gain considerable time and may avoid the tardiness
of node Te. While the furthest insertion approach (FINSA) is excellent in finding
shortest paths through topologically static networks, considerable improvements may
be needed when nodes of the network are moving and when the processing time at each
node is position-and-time-dependent, and the 2-opt improvement procedure provides
an excellent balance between performance and speed.

eio
-«*

/
/

' eg

Tb £ e2 ^ T,

Figure 3.3. Changing edges e\ and es for edges e^ and eio m tne 2-opt tour improvement
procedure. The new path segment is shown as a dashed line.

46

3.2 Target Rejection

Even when schedules are optimal, some deadlines may not be met, as we discussed
in Section 2.2.2. In such cases, and depending upon the penalties associated with
target tardiness, one or more "unimportant" targets may have to be rejected so that
"important" targets can be processed by their deadline. The problem of developing job
rejection criteria is not new, and the work presented in this chapter reflects considerable
work done by many others on similar—but much simpler—problems. Even for simple
problems, proofs of optimality are scarce, and our approach is necessarily heuristic.

As before, we have attempted to use previous results as limiting cases of our prob-
lem, hoping that the special way in which we have combined problem parameters has
produced a composite rejection criterion that is near-optimal. First, we derive the
criterion in general terms. Then we define each of its constituent elements in rigorous
detail.

3.2.1. The Rejection Criterion r

Target rejection can be discussed in terms of three simple but competing principles:

1. Ignore targets with large processing times.

2. Ignore targets whose leakage risk is low.

3. Ignore targets whose deadlines are soft.

The challenge, of course, is to combine these conflicting criteria into a rational composite
that resolves the conflicts while approaching optimality. Starting with the temporal
aspects, it was shown in Conway et al. (1967) that scheduling jobs in accordance with
the SPT schedule (shortest processing time first) minimizes the mean flow time F , the
mean time elapsed from job release to job completion. In French (1982), F is also shown
to be equivalent to mean completion time C. It was also shown in Smith (1956) and
Dyer and Wolsey (1990) that, when jobs have different weights or values, the weighted
sum of completion times is minimized if jobs are scheduled in accordance with the ratios
of their processing time to their weight, smallest ratios first. Of particular relevance to
the TSP is the machine scheduling problem of minimizing the number of tardy jobs,
those whose completion time exceeds their deadline. Extending the work of Moore
(1968) to the case where consistent release (availability, ready) times are considered,
an optimal solution was derived in Kise et al. (1978) with a rule that rejects jobs which
marginally contribute the most to completion times. This rule reduces to the SPT
schedule when release constraints are ignored. While none of these objective functions
exactly match our own, they—together with more complicated numerical rules (Abdul-
Razaq 1990)—strongly suggest that our heuristic should contain target processing time
T and target values or weights w in the form of a ratio r = w/r, larger ratios indicating
greater importance.

47

In target scheduling, processing time is defined in terms of the dwell time tD and
the retarget time tR, and we are interested in the marginal time gained by ignoring
a given target. This time gain is simply r = tD + AtR, where tD is the dwell time
conditional to the target type 6* assumed by the battle or platform manager, and AtR

is the retarget time earned by skipping the target. Observe that in the TSP, these
processing times are controllable in the sense that they are adjusted on the basis of
previous and future decisions. Recently, some renewed attention has been devoted to
problems with controlled processing times (Daniels 1990; Vickson 1980a,b), and the
simple rule outlined here agree with the results of that work.

In our risk approach to scheduling, we admit that target values or priorities depend
on many statistical factors, and we use expected leakage loss as a measure of target
value. This loss is simply PM'V, where V is the value of the target, and pM is the prob-
ability of miss—i.e., the probability that the target will leak through if its processing is
attempted. But p is determined not only by weapon lethality and target vulnerability;
it is also determined by the ability of the weapons platform to select and identify the
target. Thus, if p is the probability that the target is missed, and if we assume that
every misidentified target leaks through,

PM = (PM \ID)PID + (PM \fD) i} " *D)

= {PM\ID)PID+{1-PID)' (3-5)
where

p is the probability of correctly identifying the target, and

V I \P.r ITTT I is the probability that the target is missed if it has been correctly
(incorrectly) identified.

Expressed in terms of target destruction, we get

PK=
Z1
-PM={}-PL\ID)PID

= {pK\JD)Prm (3-6)
where pK | is the probability that the target is destroyed given that it has been
correctly identified.

As we discussed in Section 2.2.2.2, our approach allocates to each target an equal
value of pK | . Carrying along pK \ is thus superfluous, and we use only p* , the

probability of correctly identifying the target, given that the target was classified as
being of type 9*.

The target loss value L itself is uncertain, of course, since it depends on target type 6,
which is a random variable. To exploit all the available target type information and to

48

reflect the classification rules embedded in the type-discrimination algorithm, we use
the Bayes posterior expected value V* of the target value V.

Finally, the deadline hardness a €. [0,1] is only used as a multiplier in the rejection
ratio. Combining all these arguments, we obtain the composite target rejection criterion

a.p* .v*
r = —

tD* + AtR (3.7)

where
a is the deadline hardness.

p* is the probability of correctly identifying the target type, conditional to de-
ciding its type is 8*.

V* is the expected target loss conditional to 8*.

tD* is the target dwell time conditional to 8*.
AtR is the retarget time earned by skipping the target.

While the obvious strategy is thus to skip a target whose ratio is least, note the
interesting circumstance where such a least target precedes an "early" target, one
where waiting occurs. Recall that the processing of a target cannot be started before
its release time. Hence there is no point in skipping a target that precedes an early
target since that will simply increase the waiting time at the early target. Before we
address this subtlety, however, let us define the rejection ratio in more rigorous terms.

3.2.1.1. The Dwell and Retarget Times AtD* and AtR. The total time
gained by skipping a target is At = tD* + AtR, the sum of the target dwell time and
the retarget time gained. Recall that the dwell time tD is conditional to the selected
target type 8*. While the entire dwell time is gained when a target is skipped, the
retarget time gained depends on release times and completion times of neighboring
targets. Referring to Fig. 3.4, where the skipping of target Tj is considered, let t% be
the completion time of Tx, T

R
y the retarget time from Tx to Ty, tx the availability time

of Tx, and tf the dwell time of Ty. Then

tf = maxj*f_j + tf_ld, tf\ + tf . (3.8)

tf+1 = max jtf + tftj+1, tf+11 + tf+1 (3.9)

49

Figure 3.4. Target Tj is skipped by traveling directly from Tj-\ to Tj+\.

The total gain when skipping Tj is thus

Atj = tj+1 — max< tj_x + tj_ltj+i, tj+1 > + tj+1

= maxjtf + tfJ+1, tf+1} + tfl, - maxjtf.! + *f_1J+1, tf+1} - t?+\

:|iy +tyJ+1, <j+1 > -maxI<_,-_! + i;_lj+1, tJ+1 >

:{(*f-i+*f-ij+i,^+i}. (3-10)

= max<

= max<

— max<

Observe that, when release times (t£) are soft, the total retarget and dwell time
gained is simply

A*; = tf_hj + tf + tfJ+1 - tf.1J+1 . (3.11)

3.2.1.2. The Deadline Hardness Constant a. Each target Tj is assigned a
possibly different constant aj (E [0,1].

3.2.1.3. The Identification Probability p*^. We compute the probability p*ID

of correct identification using a Bayesian approach,* where p*[D is a posterior estimate
derived from prior estimates TT(0U) — prob (T is of type 6U) and additional information
about intervening decisions. More precisely, let

P*D = Prob (co"ectly deciding target type |dedde type ig g*).

p{Qu k) = prob (decide type is 6U |type ig QJ.

lißv k) = prob (type is 6V |type is eJ.

* Ferguson (1967); Berger (1980); Duda and Hart (1973); Jain (1989).

50

Then, using Bayes' rule,

p. =l(e>U.)= «WM , {s.12)

where M is the quantity of possible target types.

3.2.1.4. The Posterior Loss L*. When a target of type 9U leaks through, a loss
L(6U, a) = Vu is experienced. Given that target types are uncertain, Bayes' theorem
is also used here to compute the posterior loss L* = E(L(8u(u),a) \g*) of the target
leaking through, conditional to deciding that its type is 6*. Let TQ denote a target of
type 9U, and let

PM{°U) = prob (missing target Tgu \decide type is Q*).

p*M(Tg,0u) = prob (missing target Te and target is of type 9U decide type is 0*)-

PWU) = Prob (destroying target TQU |dedde type is g*).

P*K(
0

« \ID) = Prob (destroying T^ |dedde Q* &nd correctly identify T^)•

PK(
6

U \W) = Prob (destroying TQU |dedde g* and incorrectly identify Töu) •

Then

PWU) =PWU \ID)P)D + {PWU) \Jö)(I -P)D)

= {PWU) \1D)P]D{0U) , (3-13)

where we assume that any incorrectly identified target leaks through.

The expected leakage loss associated with a target, posterior to deciding that its type
is 6*, is thus

M
V = E(L(6(u),a) \e.) = Y/Vup*M(Tu,Ou)

u=\
M

= ^Ks(0, HPM(0<O- (3-14)

*(W k)

u=\

But

q(6u \e*) = <¥ Z7=i<(>vW* k)
and

51

PWU) = l - PH*«) = i - (PH*.) \ID)P)DW

= I-PKP*ID(OU)

{1 , 9U ^ 6*
(3.15)

(l-pK) , 0U = Ö*,

where p is a constant independent of type 6U, reflecting the fact that each target is
assigned an equal p*x(0u) \Tn- Concluding,

M Vu<eu)P(6* \ej = £ B^TVT^T-T-^iA- (3-16)

3.3 Selecting the Swell Time Vector tD

In the TSP, increasing dwell (processing) time of a target decreases its leakage prob-
ability. But it also delays the completion time of subsequent targets, and may result
in missed deadlines. In most scenarios, in fact, dwell time is the major contributor to
target completion time, and tradeoff between dwell time and tardiness must therefore
be resolved. A strict minimization of expected loss, however, could produce different
dwell times for different targets and would typically require an 11 |-dimensional nonlin-
ear optimization. During the boost phase, one way around this computational burden
is to exploit the fact that the dwell time required to achieve a given destruction prob-
ability pK is very sensitive to pK, increasing rapidly as pK exceeds a nominal value pNOM

(typically near 0.8) (see Fig. 3.5). When one target is more valuable than another,
the natural temptation to increase its pK is quickly damped when small increases in p
cause large increases in t and disproportionate losses due to tardiness are incurred,
as shown in Figs. 3.5 and 3.6 for one typical scenario.

As we discussed in Section 2.2.2.2, kill probabilities tend to bunch around a nominal
value, and the multidimensional optimization may be replaced by a scalar minimization
by assigning to each target a fixed pK, and by varying this pK until a minimum risk is
obtained. The individual target dwell times can then be computed from this single p*K

via an inversion process, and that is what we have done. An analogous situation pre-
vails during the midcourse discrimination phase where, instead of p , the optimization
variable is the particle return count NJJ. Both inversion processes involve several

52

1000_

Dwell time
D (msec)

100_

10

0.0 0.25 0.50 0.75 ?N0M 1.00
Kill probability pK

Figure 3.5. Dwell time is very sensitive to p^. above PNOM-

100

Expected
tardiness 75 --
loss E(L)

(%)

50 -4-

25 -■

0
T
10

T 1
100 1000

Dwell time (tD msec)

Figure 3.6. Tardiness losses increase rapidly as dwell times are increased.

53

subtle mathematical arguments peculiar to the defense phase under consideration, and
no generalization would have been productive. Their derivation was deferred to future
sections where each phase is discussed separately.

A legitimate concern, of course, is that the minimum risk may only be a local and
not a global minimum. Individual target variations may in fact produce as many local
minima as there are targets, as we explained in Section 2.2.2.2. But the bunching of
dwell time values also discussed earlier essentially limits the effects of these variations
to a ripple dominated by a unimodal trend, as shown in Fig. 3.7. To gain control over
these ripples, we modified Brent's Method (Brent 1973; Press et al. 1988) to allow a
tolerance setting sufficiently large that errors of magnitude less than e can be tolerated.
The value of the dwell time tD derived from p*K is then also within acceptable error
bounds.

Expected
loss E(L)

0.00

0.25 0.50 0.75 1.00

Figure 3.7. Local minima are strongly dominated by the p global minimum, and
ripples of size less than e have negligible affect on the optimum value pg.

3.3.1. Deriving the Optimal Dwell Time tD* from p^

In this section we continue the boost phase emphasis to find the dwell time t
required to achieve a given pK.

To appreciate the importance of geometry in this derivation, consider Fig. 3.8 where
we show the target's vulnerable set A^JM with radius r^iM, and *ne DEW's energy
deposition set AJJEW, with radius TDEW- Target destruction is determined by the

54

DEW energy deposited in the critical intersection AEFF — AAIM H AQEW called the
effective set, whose area we define as the effective area \ AEFF I- Clearly, no damage
is done to T if | AEFF 1= 0, and maximum damage is done when maximum energy or

power is delivered to A AIM, which occurs when \AEFF 1= rninl \AAJM\ J I AD£W| J
if we assume a uniform energy density flow through ADEW- K another pulse profile
(e.g., Gaussian, "tophat") is valid, a similar argument may be used with appropriate
energy normalization. Hence AEFF *

S

a major factor in the lethality L of the DEW,

as shown in the following definition.

Target T

>x

Figure 3.8. Geometry used to compute p and t D

Definition

We define DEW lethality as

QtD\AEFF\ (. , , \
L = 77 [joules \ 2

where

lEFF

G =
7tPD2cosa

^2R2^P{T^)

[watts I 2 h and

(3.17)

(3.18)

55

D is the diameter of the DEW optics (m).
a is the aspect angle between the DEW beam and the target.
A is the DEW wavelength (m).
R is the distance from the DEW to the target (m).
P is the DEW power (w |steradian)•

tD is the DEW dwell time.

AEFF = min | | A AIM I, \ADEW I j.

The "miss distance" MD =| XAIM~XQEW I is due to random error ex and ey caused
by random angular errors Egx and Egy due to uncertainties in acquisition, tracking,
pointing (ATP), and also in sensing and aimpoint location. AßFF is thus a random
variable, and so is the lethality L. The probability that a target leaks through may
thus be expressed as follows:

pL=p(L<H), (3.19)

where H is the (random) hardness of the target. Both the distributions of L and H
are therefore required to obtain pi- In practice, the hardness H is assumed Gaussian
with mean fijj and standard deviation ajj. But the derivation of the distribution of
L is more difficult. We proceed in steps. First, we derive the functional relationship
relating L to the underlying random angular ATP and aimpoint location errors Egx

and Egy. Then we derive the distributions of the total angular error Eg, the effective
area | ADEW \, and the lethality L. We conclude with the derivation of dwell time tD*
from the leakage probability pi.

3.3.1.1. The Functional Relationship Between L and Eg. Due to assumed
circular symmetry, the miss distance is MD = REg ,

where

Eg = lEgx + Eg) , the circular error,

Egx = bgx + tgx, the angular error along x,
Egy = bgy + e9y, the angular error along y,

bgx and 6^ are constant bias terms, and
egx and egy are random error terms.

To obtain the efFective area | AEFF 1 = 1 A AIM H ADEW I as a function of the miss
distance MD = REg, consider Fig. 3.9, where the case | AJJEW \>\AAIM I is illustrated.

If we define AEFF = min 11 XAIM I, I XQEW \ j, and if A AIM C ADEW, then | AEFF I=

I AAIM 1= AEFF. At the other extreme, if AAIM H AQEW — $■> then | AFFF 1= 0-
Between these two extremes, we assume that | AFFF I decreases linearly. The case
\ADEW \>\AAIM I is similar, and we obtain the function shown in Fig. 3.10.

56

A AEFF /
\ ADEW

^AIM

rDEW

ß><-4-
rAIM

^^J <__^/
">

Figure 3.9. Geometry used to compute AßFF (MD = REg).

|AEFF|'

AEFF

Figure 3.10. The function \AEFF\ (REg).

57

r A0 A
EFF

More explicitly,

REe <| TJ)EW - TAIM I

0 , RE6 > rDEw + ^AIM

REB- | TBEW - TAIM \\ _iV ._ (3.20)

AEFF |= <

AEFF [} ~
2min{rr>EW,rAIM } > '

otherwise .

This function exhibits | AEFF I as a function of the random miss distance MD = REe,
and of three additional parameters AEFF, rpßw and r^iM- Combining Eq. (3.20)
with Eq. (3.16), we obtain lethality L as a function of REQ, as desired. To get the
distribution of L we first compute the distribution of MD.

3.3.1.2. The Probability Distribution of MD. Recall the angular errors E$x =
bgx + eex and Ee2 = be2 + %, whose distributions are JV^&^jCTi) and N(be2 o<i), re-
spectively. Therefore, REg1 ~ N(Rbß1 R<T\) and REe2 ~ N(Rbe2,R<r2). We seek the
distribution of REQ = (Eg + E2,)1'2. To simplify notation, consider two independent
random variables X and Y with means fix and ny and common variance a\. Their
joint density is

fxy(x,y)
1 -[((x-//x)2 + (j/-^)2)/2^

(2x^)1/2
(3.21)

If we define // = (fix + A*2/) ' the probability density of the random variable Z

(X2 + y2)1/2, as given by Papoulis (1965), is

(±exp(-(z2 + fi2)/2al)l0(^) , z>0

, z <0

where Jo is the modified Bessel function of order zero:

1 r2w a ^ u2"

n=0

Rewriting this, and assuming z > 0,

(3.22)

(3.23)

AW=>K- äM- äl ^ö^(iS)2" - (3-24)

58

and the complement of the cumulative distribution of Z is

In Appendix B we show that this distribution may be approximated by a normal
distribution:

p(Z > z) = $
go - z2 + ft2

-,1/2
2(z2 + fi2)\

(3.25)

1/2
For our problem, Z = REg and /u = ((Rhi)2 + (Rbß2)

2) and <r0 = Ra, hence:

K^>^) = K?^
(l?<7)2-<22 + ^

{2R?a\d2 + /z2))1/2), <*> (3.26)

3.3.1.3. The Probability Distribution of L. We start by deriving the cumulative
distribution (CDF) of \AEFF I- Referring to Fig. 3.8 and Eq. (3.20), define

pQ = prob(|AEFF1= OJ = prob{RE9 > rDEW + rAIMj ,

and

pi - prob(\ AEFF1= AEFF) = probyREo < \ rDEw - ^AIM I j

We approximate the CDF of | AEFF I as follows (see Fig. 3.11):

(0 , a < 0

P(\AEFF\< a)= <

Po

1-pi

1

^ , (l-pi-po)«

a = 0

a — AEFF

a > AEFF

0 < a < A°s EFF

(3.27)

where the events {| AEFF |< 0} and {| AEFF \- AEFF) are equivalent to the events
{REg > rDEw + rAIM} and {REg < \ rDEw ~ TAIM I}, respectively.

59

CDF(a)

AEFF
EFF I =»

Figure 3.11. The Cumulative Distribution Function (CDF) of | AßFF I-

Finding the CDF of L is now easy:

p(L < I) = <

0

Po

I-Pi

1

Po +
(I-Pi-Po)

*EFF

l<0

1 = 0

l = QtD

l>QtD

0<l<QtD

(3.28)

3.3.1.4. Deriving the Dwell Time tD*. Recall that pK = p{L > H). But

pK= [p((L >h)A(H = hj^dh

= f p{{L>h)\H=h)fH{h)dh.
J H

Using the approximation /.ff(h) to the Gaussian density shown in Fig.3.12, we have

PK = TZ- P(L> h)dh • (3-29)
WH JaH-l.hcrtj 'HH-l.'ötTH

Substituting the expression for L,

PK(t) = ^— P(AEFF>

hAEFF\dh (3.30)

60

Even though we have the distribution of AEFF (see Eq. 3.27), and pK is monotonically

increasing in tD, the derivation of the unique inverse tD = P~K(PK) is tedious, and it
is reported in Appendix C. The resulting expression for tD is:

' qoL + 3*HPK + [(go£ + Z°HPK? - (go + pi)(go - Pi)£2]1/2

<5(go - Pit)

tD* = <

0<pK<

t*H(qo-pi)
Q(gO - PK) ' VH

oo

/i jpi + 1.5<7ffg0

, go < PK < 1

where

go =1 - Po
(3.31)

FH(h) 1.0

HH - 1.5 aH HH uH +1.5 aH

> h

Figure 3.12. For our problem, this is a good approximation to the Gaussian cumulative
distribution.

61

3.4 Designing Smooth Command Schedules to Minimize Hard-
ware Jerk

To the platform pointing controller, a target schedule is simply a sequence of step
inputs. Unless some smoothing or shaping is applied to these commands, various vibra-
tional modes could be excited on the platform, resulting in unacceptable increases in
settling time of the beam control hardware, the platform forebody in particular. But a
brief glance at the typical threat distribution of Fig. 3.13 suggests that an effective fast
steering and forebody control law could be developed where the lighter fast steering
subsystem could be used to direct the beam from target to target, while the heav-
ier forebody and the main body slowly drift through the target, thereby minimizing
platform jerking.

Such a control law must simultaneously solve two optimization problems—a geometry
problem and a timing problem. The geometry problem is to find an optimal path
through the target set, without consideration of time. The time problem is to find
an optimal trajectory through the target set by associating optimal times with the
various points along the path. This process is obviously subject to the constraint that
fast steering and forebody motions are limited, as shown by the circles in Fig. 3.13, the
radius of each circle indicating the maximum fast steering subsystem deflection allowed
from the center, where the forebody is aimed (main body ignored here). The problem
then essentially reduces to sweeping through the targets set with a moving circle in
such a way that the center of the circle is moving smoothly.

Let XjjT, r be the position of the rth target following Tk in the target sequence, and
let tjfc+rbe the time at which processing of Tk+r starts. Then tk+T is the sum of tk and
all the dwell and retarget times for the targets between Tk and Tk+f.

h+r = tk +]T if+m . (3.32)
m=0

Using the target sequence and the processing times tk+r, our recursive approach does
not generate position (angular displacement step function) commands. Instead, it
produces smooth velocity commands, expressed as displacement-time pairs (AX, At)
as follows.

START

1. Assume velocity command output at time tk is (X^+r — X£ , tk+r ~~ tk)-

2. Change velocity command to (Xj. +1 — X[B, tk+T+i — tk) if au targets between
Tfc and Tk+r+i can be reached by redirecting only the fast steering subsystem when
the forebody is moving along the straight-line segment from X^ to X^+T at a

62

constant velocity

j^FB _ Xk+r+l x{*
tk+r+1 - tk

3. Otherwise, do not change the velocity command, and retry (X"£+r+2, tk+T+2) when
processing of T* is complete.

(Xk+r-1, tk+r-1

r
Forebody ""^u N.
velocity
at t = t.

k+r+1» tk+r+1

 >

/

[
Xk+r+2'tk+r+2j

Figure 3.13. The forebody trajectory from (XJ:B,tk) towards (XjjT+r+1, tk+r+i) may be

extended towards (Xk+r+2: ^fc+r+2) (as shown) if all intervening targets fall within the
tube generated by the moving circles (each node is a target state-time pair).

As seen from the dashed lines in Fig.3.13, the extension works for (X^+T+1, tfc+r+i)
but fails for the next pair (-Xj+7.+2, tk+r+2) due to the excessive forebody angular
displacement required. Except for such extreme—and infrequent—displacements, the
algorithm continuously updates its velocity output as targets are processed and new
targets come within the projected reach of the forebody. For the unfavorable example
of Fig. 3.13, the output signal produces velocity outputs whose direction is indicated
by the unit vectors assigned to each target vertex. The forebody trajectory is thus a
smooth path through target e^-neighborhoods, as shown in Fig. 3.14, and Fig. 3.15
exhibits the flow chart for the smoothing algorithm. Observe the following definitions
for that chart:

63

X™(tn) = XFB{tk) + ^(l^t*™^ ~ it) ,

where t^+r is the start time of Tfc+r derived from Eq. (3.32).

(3.33)

(xP.tk)

(xj,tk) Forebody
trajectory

Fast steering
trajectory

Figure 3.14. The forebody drifts smoothly through target e -neighborhoods.

To quantitatively estimate the smoothing characteristics of this subroutine, recall
some elementary notions from second-order linear systems theory (Kuo 1975). For
linear systems, "jerk" is defined as the third derivative c(3'(t) of the system output
c(t). For a second-order critically damped system with step input U(i) of size U0 ,

c(t)u = U0(l + cjnte-Wnt) ,

whose maximum occurs at t = 4fujn and equals

U3\t)u) = -e-WnUo .
V / max

For a ramp input R of size RQ,

c(t)R = R0\t + te -w„t
UT,

cW(t)R = R0u
2

n(z-u;nty

whose maximum also occurs at t = -j-, and equals

—Wni

Un ■

\ / max
e~Au2

nR0

(3.34)

(3.35)

64

Target Tk_1 processed

Start with T^t^X^

I
r=0

I
r-»r+ 1

T
Consider extending velocity
vector to x£+r

YES

FT? output (X k+r_! - X k, t k+r_i -1k)

to forebody controller

T Continue with Tk when Tk is processed

Figure 3.15. Flowchart for the forebody smoothing algorithm.

65

The ratio of step jerk to ramp jerk is

■Ajerk —
w. FB Uo

Ro

where u^B is the characteristic frequency of the forebody.

Now consider a target sequence T =< T\,... , TJ,... Tjv > whose target-to-target
angular displacements are U =< 8\,... ,Qi,.. .0N-I >■ Then, without smoothing, if
we define 9* = max {0; : i = 1,..., N - 1}, the forebody jerk magnitude may reach
(u£B))36*e~4. But, using the smoothing algorithm of Fig.3.15, the smoothed jerk
magnitude is at most (oj^B)3Rma.xe~4, where

-Rmax = max

$ h,h

E3(^ + ^)
{rJfcl,...,rib2}craiid

\\Xntk)-XFB(tk)\\<e^

k = ki,..., &2 •

8k* k*

Z-ir=k*\ r +r)

The jerk attenuation ratio is thus at least

A.-flL
-Km

(3.36)

For many reasonable threats—especially for target-rich ones—the angular distance
9kltk2

wul be small compared to the sum Ylr=i 1 ^kr,kr+i °f intervening distances, and
k2 — ki will be close to the total quantity N of targets. In such cases, the jerk attenuation
ratio will be very large, possibly infinite, since the forebody may not have to be moved
at all. Consider a more conservative example where

N = 100

"1 — ""2 =
N
2

n 10 sec-1

*? = 0.1 sec

*? = 0.3 sec
0* = 10 mrad

66

0k* jL* = 50 iiirad

Then
„ 50 mrad n „ . ,
Ämax = ~—pr-; = 2-5 mrad/sec > 50 x 0.4 sec

and
10 x 10 mrad/sec

At = —— rH = 40,
2.5 mrad/sec

a considerable reduction in forebody jerk.

67

4. The Target Scheduling Algorithm
for the Boost Phase

4.1 Introduction

In previous chapters, we formulated the Target Scheduling Problem (TSP) as a sta-
tistical decision problem consisting of three major subproblems, and in Section 2.2.2.2
and Chapter 3, we provided a functional overview of DDTS.

Consider the threat illustrated in Fig. 4.1, where T,y is the jth target to be processed
by deadline di. Although we address the boost phase in this section, we should note
that during midcourse the point-targets shown as dots in Fig. 4.1 represent "clouds" of
objects. These clouds contain various mixtures of Re-entry Vehicles (RVs), decoys, and
replicas, and we shall examine these representative dots in greater detail in Chapter 5.
Observe that the threat pictured in Fig. 4.1 is rather benign, with clearly separated
deadline classes. In general, most complex threats must be assumed to contain targets
whose positions are not as conveniently correlated with their deadline.

di
di

Figure 4.1. A threat with m deadlines showing the m deadline-equivalence classes.

we In this chapter, we focus on algorithmic and computational issues. As before
emphasize ground-based and space-based directed energy weapons in the boost phase,
deferring to Chapter 5 any extensions to the midcourse discrimination phase. We only
discuss the principal flows of the DDTS algorithm, avoiding unessential details about
its software implementation. While we provided a brief version of "heaps" to illustrate

69

how paths and tours are manipulated in the computer, we have deliberately omitted
any discussion of pointer arithmetic, dynamic memory allocation, and other powerful
features of the C-language used in our program. These and other implementation
details can easily be extracted from C-language users' manuals and from the source
code of the DDTS program.

Viewed as a computational module, DDTS is a multiple-input-multiple output system
specified by a large number of parameters. Referring to the simplified description in
Fig. 4.2, the threat information consists of a threat assignment T = {T; : i = 1,..., N},
each target (label) T{ a vector specifying the position and velocity vector, deadline and
release time, type, vulnerability radius, aspect angle, hardness mean and variance, and
value of the target.

Optimization criterion H
Constraints F

Treat information
7, y —>

Fast steering commands
Forebody commands
Platform commands
Target sequence (ri)
Target dwell times (tD)

DEW Platform Parameters (XD)

Sensor Information (Xs)
Environment and background information (XjO

Figure 4.2. Input-output sketch of DDTS.

The DEW platform is specified by an Acquisition, Tracking, and Pointing bias and
variance, a pointing state, a "field of action" (field of regard), position and slew sat-
uration levels, damping constants, and desired settling accuracies for the fast steering
subsystem, the forebody, and the main platform body. The DEW itself is defined by
its beamwidth, its frequency, its power, and its bias and jitter. The environment is
specified by the engagement geometry and the relative state of the DEW and each
target, but no specific background information is considered in the current version of
the algorithm.

Sensors are characterized by their position and velocity vectors, their beamwidths,
and their tracking errors. The target ID information provided by the sensors is repre-
sented as a discrimination matrix [p,j] whose entries pij specify the probability that a
target of type j will be classified as one of type i.

70

The optimization criterion H defines the measure by which the performance of DDTS
will be judged. For target scheduling in the boost phase, this measure is essentially the
same as that used in judging the overall platform performance, since target scheduling
is the principal platform management task. Consequently, we use expected target
leakage risk as a criterion during the boost phase. As we discussed in earlier sections,
minimizing this risk is a complex optimization process subject to various constraints
like deadlines, release times, and energy limits, and these are specified in the constraint
structure F.

To provide a more detailed explanation of how DDTS computes an optimal schedule,
we discuss the algorithm from a perspective where the problem is broken into just two
major parts, a time optimization and a pK optimization, as shown in the two-level
approach of Fig. 3.1.

The lower-level inner loop is a "local" optimization subroutine where, for each pK

considered in the outer loop, target schedules are found that reduce target completion
times until no tardy targets remain or until minimum completion times are attained.
In the event that some tardiness remains, least important targets are rejected in ac-
cordance with the rejection rule r (Eq. (3.7)) until all targets scheduled for processing
can meet their deadline.

This time-line optimization is usually not sufficient, of course, since total leakage risk
typically increases as dwell times are reduced past a certain minimal value. To account
for this time-lethality trade-off, DDTS includes an outer loop where total leakage risk
is minimized by finding the optimal value of pK using the BRENT Algorithm (Brent
1973; Press et al. 1988).

4.2 Local Optimization: Optimal Sequencing and
Target Rejection

Four major functions are performed in the inner optimization loop (see Fig. 4.3):

1. Initial tour construction.

2. Tour verification.

3. Tour improvement.

4. Target rejection.

Even though dwell times are not optimized in the inner loop, their values are essential
in the computation of target completion times and tour time-lines. In each of the tour
calculations, dwell times were obtained from pK values fixed in the outer loop.

71

42.1 INITIAL TOUR
CONSTRUCTION

n value Threat information

J i
Find initial tour

I
Compute target dwell
times from pK

±

42.2 TOUR
VERIFICATION

423

42.4

Update target time
and state

No
Next target on
tour

X Any X
/ constraints ^^

^\. still violated? /

TARGET
REJECTION jfVes

Bypass least
important target

Figure 4.3. The inner loop of the DDTS algorithm is a
local optimization loop with four major subroutines.

72

4.2.1. Initial Tour Construction (Subroutine INITOUR)

Using appropriate kinematic information about the targets and a fixed pK value
received from the outer loop, the first operation in the inner loop is to construct an
initial tour through the threat. Considering that all the targets are moving, this is an
interactive process which alternates between the three major tour construction steps
described in Chapter 3 and a target update process where state updates are computed
as a tour is developed. A more detailed view of INITOUR, the algorithm that actually
finds the initial tour, is provided in Fig. 4.4.

p value

i
Threat
information

i
Find deadline

equivalence classes

I
Update target states

for this class

I
Connect this class to

previous class

I
Find shortest path
through this class

i
Determine exit time

for this class

No

Fetch next
class

Yes

To Tour Verification

4.2.1.1

4.2.1.2

4.2.1.3

■FINS A 43.1.4

4.2.1.5

Figure 4.4. The INITOUR initial tour construction subroutine.

73

4.2.1.1. Computing Deadline Equivalence Classes. The first step in conduct-
ing a tour is to construct and link deadline equivalence classes, sets of targets that
share the same deadline. To further refine the deadline partition and the ordering
of the targets, deadline-equivalent targets are further ranked in accordance with their
release or availability times. Hence, two targets are equivalent if they have the same
deadline and release time (lexicographic order (Aho et al. 1974)).

In the DDTS algorithm, target classes are linked lists of objects, and class construc-
tion involves several standard operations: sorting, ordering, inserting, deleting and
searching. Because there may be many deadline equivalence classes, and each may
have to be recomputed many times due to the insertion or deletion of targets through-
out an engagement, the computational efficiency of the class construction process is
essential. We have chosen a heap* as the basic data structure for doing this job. Let
us briefly review heaps and their use.

4.2.1.1.1 Heaps. Consider a scalar ordering < on the real numbers and a set
H = {a,- : i = 1,..., N} of N numbers. Then H is & heap (see Fig. 4.5), if its elements
satisfy the relation

alJm<aj,l<y/2\ <N, (4.1)

where [x\ is the smallest integer greater than x. A more detailed but informal discussion
of heaps was taken from Press et al. (1988) and is provided in Appendix D.

Sorting with heaps is done in two major steps.

1. Heap Construction.

2. Heap Search.

Figure 4.5. A 12-element heap and its implied ordering. Elements are ordered only
"vertically" and not "laterally".

* Press et al. (1988); Aho et al. (1974); Knuth (1973); Sedgewick (1988).

74

4.2.1.1.2 Heap Construction. Depending upon whether the set H of data
is available as a whole (concurrently) or only one element a,- at a time (sequentially),
an algorithm like HEAPIFY (Horowitz and Sahni 1978) (also BUILDHEAP (Aho et
al. 1974)) or INSERT (Horowitz and Sahni 1978) is used, respectively. The latter
constructs a heap one element at a time, requiring 0(n log n) work, whereas the former
benefits from having all the data at once and only requires 0(n) to construct the heap.
Due to constant target updates (new targets or destroyed targets), DDTS uses insertion
to construct a heap.

4.2.1.1.3 Heap Search. A heap only structures the data and does not by itself
provide a total ordering. To get the ordering (sort), elements must be removed from
the heap one at a time, largest element first. This requires 0(logn) work per element,
or 0(nlogn) for the entire heap.

4.2.1.1.4 HEAPSORT. Both construction and search steps have been com-
bined into an algorithm known as HEAPSORT.* When the set H = {a; : i = 1,..., N}
of input objects is available simultaneously, heap construction is easiest, and a worst
case of only O(NlogN) work is required by HEAPSORT to sort the objects. In the
sequential case where element-by-element insertion is required, 0(2NlogN) may be
needed (Horowitz and Sahni 1978). Other algorithms have been developed to sort data
quickly, but only QUICKSORT is worth mentioning here. On the average, QUICK-
SORT actually requires only O(NlogN), a factor of 2 better than the worst case for
HEAPSORT, which also requires about as much on the average. But the fact that
the average and the worst case behavior of HEAPSORT were comparable and that
QUICKSORT is actually an 0(N2) algorithm in the worst case were sufficient reasons
to choose HEAPSORT for our problem because there is no evidence that many threat
scenarios will be "average" in any sense.

4.2.1.2. Updating Target States. We define the exit time of a class as the
completion time of the class or, equivalently, the completion time of the last element
of the class. The exit time te of an n-target class is thus

»=i *=i

where, in accordance with the retarget and dwell time calculations of Sections 2.2.1.3
and 2.3.3.1,

i^L is the retarget time to Target 7r(z) in position i,

t^x is the dwell time of Target n(i) in position i, and

t°. is the exit time of the previous class.

* Knuth (1973); Sedgewick (1988); Horowitz and Sahni (1978).

75

Even though the state of each target is time-varying, only one clock time is assigned
to each equivalence class and to its target members during initial tour construction.
This provides considerable computational economy and will be checked later during
tour verification. Using the same definitions as in Eq. (4.2), the clock time tc of a class
is the "average" clock time of its members, also called the class time:

»=i t=i

(4.3)

Using this clock time and the initial states of all targets in the class, Eqs. (2.29-2.32)
can be used to calculate the states of targets at exit times and at all future class times.

4.2.1.3. Connecting Target Classes. Target class connection is done by re-
cursion. A path through a target class starts at a target determined by the previous
class and ends at the target chosen to minimize the total retarget time from the start-
ing target to the first target in the next class. Consider the three contiguous classes
shown in Fig. 4.6. If T\ is the starting target in C2 (determined by the topology of
C\) then, given the tour shown in C2, Ta and T\, are the only two potential succes-
sors to T\, and only two paths are allowed through C2, ^1 =< Ti, T&, Tx, Ta > and
7T2 =< Ti, Ta, Tx, Tf, >. Whether TT\ or 7T2 is chosen is determined by the following
cost comparison: connect Ta to Tc if

tR(Ta, Tc) - tÄ(Ti, T«) < tR(Tb, Td) - iÄ(Ti, Tb), (4.4)

otherwise connect Tj to T^.

Figure 4.6. Classes are connected to minimize retarget time.

4.2.1.4. Shortest Path Through a Class. In the previous section, a shortest
path through class C2 was assumed. As discussed in detail in Section 3.1, this path is
found using the Farthest Insertion Algorithm (FINSA).

76

4.2.1.5. Class Exit Target and Exit Time. The exit target is found as shown
in Section 4.2.1.3. The exit time was derived in Eq. (4.2), where it was also called the
completion time.

4.2.2. Tour Verification

An initial path through the target set was developed using the INITOUR subroutine,
assuming that all the targets in any deadline equivalence class have the same clock time.
During tour verification, the validity of this assumption is examined by verifying that
all the deadline and energy constraints are met along the chosen path, as shown in
Fig. 4.3. If they are, nothing remains to be done. If not, an improved path through
the targets must be found, and this is the subject of the next section.

4.2.3. Tour Improvement

In Section 3.1.3, we motivated the need for tour improvements, and we presented
a brief discussion of the 2-opt procedure. Now we provide a simple flowchart of how
2-opt is used in the DDTS algorithm (Fig. 4.7).

The tour improvement subroutine is simple. For each candidate edge-pair (e^, eq)
there must be at least a local timeline improvement (local to the pair (e^, eq) be-
fore testing whether the constraints are still met for all targets Tm preceding Tk, the
last target whose position was altered by 2-opt. Note that the routine is a bit more
complicated than shown, due to the recursive nature of path improvements. As paths
are improved, new collections of pairwise improvements appear, and qmax and kmax

must be reset periodically. To avoid combinatorial "runaway", only a given number of
iterations can be afforded, and this "maximum count" is set adaptively as a point of
marginal diminishing returns is approached.

One effective way to control runaway is to limit the range of the 2-opt process by
limiting qmax and kmax to only a fraction of the quantity of targets preceding the first
late target Tj.

Due to release times, a marginal timeline improvement may not assure a global
timeline improvement. Only when a global improvement is assured is the pair (e*, eq)
accepted and is it "cemented" in the tour. But the first late target Tj that initiated
2-opt may still be late, and the process may continue until the maximum count is
reached.

77

Ti (first late target)

To Target
Rejection
Subroutine

Keep pair (ek,eq)
and patch tour

Yes

Next Target Tj+1

Figure 4.7. Simplified flowchart of the 2-opt tour improvement subroutine.

78

4.2.4. Target Rejection

If Tj is still late after the maximum allowable number of pairwise exchanges, one
or more targets must be ignored, as shown in Figs. 4.3 and 4.8. This is accomplished
by organizing all targets into a heap—the "r-heap"—using the rejection ratio r of
Eq. (2.50) as a criterion, the target with lowest r-value considered as the maximal heap
element (see Section 4.2.1.1.1 for a more detailed discussion of heaps). O(log N) work
is required to pull the maximal target from the r-heap, and another O(log N) work
to "reheap" the remaining targets. Returning to Fig. 4.8, this target rejection process
must halt since there is at least one target that satisfies its deadline constraint.

As a closing comment for this subsection, note that the rotation and position ex-
tensions described above must be executed repeatedly as new target sequences and
schedules are tried during the optimization process. To avoid unnecessary repetitions
of these calculations, the future positions of all the targets are calculated just once
and stored in a look-up table for further reference. Further computational gains are
made by defining these future target states on a time scale of appropriate granularity,
typically one second.

Tj still late

__J
Pull maximal target
from top of r-heap

I
Pull target from tour

and patch tour

YES

Next Tj

Figure 4.8. Target rejection is accomplished using the r-heap.

79

4.3 Global Optimization: Optimal Dwell Times

The outer loop of DDTS shown in Figs. 2.5 and 3.1 minimizes the leakage risk by
finding an optimal value of pR. By referring to this process as "global optimization"
we are abusing conventional terminology somewhat,* and we should actually refer to
it as outer optimization since we have in effect a function f(x, y, z) of three variables
for which we seek a minimum,

/* = minif(x,y,z)\ = min {min {min {/(x,y,z)}}| , (4.5)
x,y,z *• ' x *■ y *• z ' J

where x is the outer variable representing p . This outer loop is a scalar optimization
loop whose convexity properties were discussed in Section 2.2.2, where we showed that,
as a function of pK, the objective function 72.(jpK) is a jagged function that exhibits
several local minima, potentially one for each rejected target. But, unless deadlines are
extremely hard and the threat environment is target-poor, jaggedness is not severe and
the risk function behaves in a relatively smooth and convex manner. So it is reasonable
to consider a golden section search (Press et al. 1988) since it is designed to handle
the worst possible case of function minimization. But if the function is nicely parabolic
near the minimum, then the parabola fitted through any three points should drive us
in a single leap to a point very near the minimum. Since an abscissa is sought rather
than an ordinate, the procedure is technically called inverse parabolic interpolation
(Fig. 4.9).

As Press et al. (1988) explain it, the formula for the abscissa x which is the minimum
of a parabola through three points /(a), /(&), and /(c) is

1 (b - q)2[/(6) - /(c)] - (b - cf[f{b) - /(g)]
+ 2 (b - a)[f(b) - /(c)] - (6 - c)[/(6) - /(a)] " ^ ^

This formula fails only if the three points are collinear, in which case the denominator is
zero (minimum of the parabola is infinitely far away). Note, however, that Eq. (4.6) is
as happy jumping to a parabolic maximum as to a minimum. No minimization scheme
that depends solely on Eq. (4.9) is likely to succeed in practice..

The exacting task is to use a scheme which relies on a sure-but-slow technique, like
golden section search, when the function is not cooperative, but which switches over to
Eq. (4.6) when the function allows. The task is nontrivial for several reasons, includ-
ing these: (1) The housekeeping needed to avoid unnecessary function evaluations in
switching between the two methods can be complicated. (2) Careful attention must be
given to the "endgame," where the function is being evaluated very near to the roundoff
limit of Eq. (4.6). (3) The scheme for detecting a cooperative versus noncooperative
function must be very robust.

Papadimitriou and Steiglitz (1982); Press et al. (1988).

80

Parabola through ©@®

Parabola through ©©0

^ \ '
/ /

\\ f

1 / t

\ Vs.
\ >»
\\
\\

>
> ■©"Ö7

Figure 4.9. Convergence to a minimum by inverse parabolic interpolation. A parabola
(dashed line) is drawn through the three original points 1,2,3 on the given function (solid
line). The function is evaluated at the parabola's minimum, 4, which replaces point 3. A
new parabola (dotted line) is drawn through points 1, 4, 2. The minimum of this parabola
is at 5, which is close to the minimum of the function.

Brent's method (Brent 1973) is up to the task in all particulars. At any particular
stage, it is keeping track of six function points (not necessarily all distinct), a, b, u,
v, w, and x, defined as follows: the minimum is bracketed between a and 6; x is the
point with the very least function value found so far (or the most recent one in case
of a tie); w is the point with the second least function value; v is the previous value of
w; u is the point at which the function was evaluated most recently. Also appearing in
the algorithm is the point xm, the midpoint between a and b; however, the function is
not evaluated there.

You can read the code (Brent 1973) to understand the method's logical organiza-
tion. Mention of a few general principles here may, however, be helpful: Parabolic
interpolation is attempted, fitting through the points x, v, and w. To be acceptable,
the parabolic steps must (1) fall within the boundary interval (a, 6) and (2) imply a
movement from the best current value x that is less than half the movement of the
step before last. This second criterion insures that the parabolic steps are actually con-
verging to something, rather than, say, bouncing around in some noncovergent limit
cycle. In the worst possible case, where the parabolic steps are acceptable but useless,
the method will approximately alternate between parabolic steps and golden sections,
converging in due course by virtue of the latter. The reason for comparing to the step

81

before last seems essentially heuristic: experience shows that it is better not to "punish"
the algorithm for a single bad step if it can make it up on the next one.

Another principle exemplified in the code is never to evaluate the function less than
a distance TOL from a point already evaluated (or from a known bracketing point).
The reason is that, as we saw in Eq. (4.6), there is simply no information content in
doing so: the function will differ from the value already evaluated only by an amount
of order e, the runoff error or function jaggedness. Therefore in the code there are
several tests and modifications of a potential new point, imposing this restriction. This
restriction also interacts subtly with the test for "doneness," which the method takes
into account.

A typical ending configuration for Brent's method is that a and b are 2 x x x TOL
apart with x (the best abscissa) at the midpoint of a and 6, and therefore fractionally
accurate to ±TOL.

Note that TOL should generally be no smaller than the square root of the computer's
floating point precision, and that TOL can be set sufficiently high that, within accept-
able risk errors, local minima are ignored as feasible solutions, and only global minima
are obtained.

As concluding comment on the outer optimization loop, observe that dwell times t
are controlled and specified by values of pK. The relationship between the tD vector
and pK is monotonic and is formally derived in Appendix B.

4.4 The Ground-Based DEW

We have focused thus far on DEW systems that are space-based. When laser energy is
derived from a ground-based station, a relay or collection subsystem must be added to
the DEW system, and additional articulation constraints must be introduced. Referring
to the hypothetical design of Fig. 4.10, the DEW platform must remain oriented so that
proper alignment can be maintained between the collector ("catcher") C, the fighting
mirror FS, the target T, the base B, and the forebody FB. If we define the vectors
as in Fig. 4.10, we have the following angular constraint on the forebody-to-catcher
angular position 6 :

0 > 7T - Bmax - 6max , (4.7)

or
YE . YE / x

||xfr||||x* || -cos V ~ $™x ~ M ■ (4-8) L
Dr Nil ^DB

The constraint is thus

XDT'XpB < _rnJaFB >QC \
I vE llll vE II — cos\umax ' °max)
\ ADT INI ADB II V y

(4.9)

82

T3 s
a 00

«T-j c
cd Ü ^^ »•^

o O
OO

Q

§3

e
s
o u
uo
V

u a
>>

s
o

Si
s

83

The inclusion of this constraint in the expression for retarget time (Eq. (2.21)) yields

/ QFB \ / ßFB \
*f(0 = 4s*M + 4B1t&v(°i-^r) +tU,{i)U(dl—^-)+kGBLU(A + B), (4.10)

where
YE .YE

A _ *DT ^DB d

II *lr 1111*1* II'

= «w(«2L-«£.,)
Typically, kcBL wm be a large number since considerable time may elapse until a
violated constraint is again satisfied.

84

5. Scheduling Targets During the
Midcourse Discrimination Phase

5.1 Introduction

During the midcourse and terminal interception phases, the offense may attempt to
conceal its RVs by releasing a mixture of decoys and RV replicas during the post-boost
phase. This obviously complicates the threat assessment process and forces the defense
to expend additional resources to compensate for the increase in threat uncertainties.

Consider a midcourse threat consisting of a collection W = {wi : i — 1,..., 111} of
1I1 threat clouds w,, each cloud having a density mi of objects or targets, of which r; are
RV replicas, d{ are RV decoys, and n; are actual RVs, as shown in Fig. 5.1. While some
of the information needed to effectively allocate defensive resources to such a threat

•IS *-* Directed
energy

platform

Replic

Target
Clouds

Figure 5.1. In response to an interrogation pulse from the DE platform (D), targets emit
a response beam that may be observed by one or more target sensors (Sj) for target
classification.

85

is collected from a variety of sources, the most reliable and timely knowledge about the
targets is acquired during the real-time task of target discrimination, also referred to
as target classification or target identification.

One way to accomplish this task during midcourse is to deploy a network of directed
energy devices and sensors, as in Fig. 5.1, each device designed to illuminate or inter-
rogate the target in some way, and each sensor stationed to observe and process the
results of such an interrogation in order to classify each object as an RV or as a non-RV.
A promising concept involves Neutral Particle Beams (NPB) stationed on platforms in
low or high earth orbit, one beam per platform, and each platform assigned a subset of
targets by a battle manager. Each target T is sequentially illuminated for a duration
of r seconds, regenerating neutral particles whose quantity and energy may be used by
the sensor network to decide—or at least to guess—T's type. Although we emphasize
the NPB concept in this report, the methods we have developed apply to virtually any
active target classification and scheduling problem, and to many passive ones as well.

During this midcourse discrimination phase, the major objective of the platform is
to process the collection of targets assigned to it by the battle manager in accordance
with a schedule that maximizes overall platform performance. In attempting to achieve
this optimality, a precarious tradeofF develops between the statistical confidence in the
classification estimates and the time required to reach that confidence. Referring to
Fig. 5.2, the risk of misclassifying targets decreases as more time is allocated to the
discrimination process, but the risk of missing deadlines and rejecting targets then also
increases since the time line is stretched out.

Interrogation time

Figure 5.2. As interrogation time r is increased, classification errors decrease, but less
targets can be processed by their due date.

86

Similar to the boost phase, where leakage probability was our major optimization
variable, the interrogation time r is the most effective control variable during the
midcourse discrimination task. But the tour optimization methods developed for the
boost phase are needed here as well because in most scenarios retarget times still
account for a significant consumption of the allocated time budget.

To gain some insight-into our approach, consider Fig. 5.3, where a battle manager
hands over a target assignment to the NPB platform. Because the battle manager's
knowledge of the threat is incomplete, this assignment contains only generic statistical
information:

1. Gloud position and velocity centroids (no individual target state
information).

2. Deadlines and release times.

3. Cloud weights and structure.

4. A-priori target type information.

This information is refined in real time by on-board tracking and classification algo-
rithms as shown in Fig. 5.3. Following the flow of this figure, and starting with an initial
interrogation time of r0 seconds, the first step is to estimate the physical response of
the target to our NPB pulse of r seconds, and this requires the modeling of several
intermediate physical steps, as shown. The response of a target to an interrogation
pulse is observed by the sensor network, and all sensor detections are fused into a col-
lective network output. In this report, we employ the very simple fusion policy where
the network response equals the response of the sensor whose signal-to-noise ratio is
the largest.

The network output is used during the Bayesian update process where prior infor-
mation about the cloud densities and type distributions are improved into posterior
density functions. Together with the losses L{ßi \g.) incurred by classifying a target of
type Qj as one of type 0;, the posteriors are used to calculate the expected classification
risk KC(T) discussed in detail below. Given the interrogation times r = {nj}, the next
step is to calculate the minimal rejection risk KT{T), as we did for the boost phase.
Recall that this involves finding optimal tours 7r* through the threat and, whenever
necessary, requires rejecting targets in accordance with a rejection criterion r. While
this too will be discussed later, we should mention that, during midcourse discrimina-
tion, we employ a two-tier approach to tour construction. In the bottom tier, targets
have their usual representation as points or vertices in our graphs, but in the top
tier, these vertices represent entire threat clouds. Tour optimization is first started at
the top tier by finding the best tour connecting cloud centroids. This is followed by
finding the shortest tour relating the targets within each cloud. This is obviously an

87

M
b
es

X!

M
S
2
i.
9
O

»1

es
•o
e
ts

es

-Q.-5

13 5
o -=
2 «
= o

** i
c —
'= g

I 2
■§!

o •a

B..S

« g s s

■S 2 u s
ec es u u
J £
-I

*-» rä 33 4>

g i E §
f5 T3 e «o es
f u -o & ^ ec

88

iterative process since the calculation of cloud tours also requires some estimate of
inter-target retarget times, but it results in considerable computational speed-up and
usually involves a negligible compromise in overall tour quality.

The total discrimination risk is the sum KTOT(T) — KC(T) + ftr(r), and this risk is
minimized by finding the optimal interrogation time r,y common to all targets. Similar
to equalizing all the p^'s during the boost phase, forcing all r,y's to be the same ad-
mittedly yields only a suboptimal solution since, in general, each target could require
a different interrogation time to achieve global optimality. But our calculations with a
similar suboptimal approach in the boost phase have shown that errors resulting from
equal Ty's are acceptable when computational complexity is considered.

Even though target scheduling is the main focus of this report, it should be clear
that no acceptable scheduling solution can be obtained without first solving the target
classification problem because targets whose identity is not known cannot be effectively
scheduled. Several methods for identifying and classifying objects have evolved over
the years,* and these include methods based on Minimax, Bayes risk, and neural or
Hopfield nets. In strategic defense problems, the concept of "k-factor" has acquired
unargued acceptance in some circles (Holmes and Rocklin 1990; Rocklin and Tolleson
1986).

We rejected minimax approaches because they would lead to highly improbable,
non-unique, and time-consuming solutions. We also had several reasons for rejecting
neural or Hopfield nets. Such nets do very poorly in time-varying, high-dimensional,
and stochastic situations where costs of classification errors may vary, and where con-
siderable modeling robustness is required. Target scheduling also requires not only the
effective processing of on-line data, but also the prediction of vehicle states far into the
future. In reference to ^-factors, we demonstrate below in greater detail that midcourse
discrimination problems are strongly non-Gaussian, and that costs of classification er-
rors may vary considerably. Furthermore, instead of attempting to meet a predeter-
mined performance criterion that almost surely will be nonoptimal, our scheduling
strategy is based on an optimization approach that assures the minimization of total
risk, at least in principle.

We therefore selected a classical Bayesian risk approach to target classification and we
made the following assumptions. All objects in the same cloud have the same deadline
and release time, and only one object is illuminated at a time, with a uniform beam
that has an abrupt drop-off at its edges (a "cookie-cutter" beam). This simplified
model can be improved by introducing an /-spot model associated with a Gaussian
beam, as we did in the communication study reported in Corynen and Glaser (1992).
If the effects of chaff, loose booster shells, or other forms of intentional or accidental

* Ferguson (1967); Berger (1980); Duda and Hart (1973); Jain (1989); Devijer and Kittler
(1987); Joachimsthaler and Stan (1988); Kochler and Evenguc (1990); Seber (1984).

89

debris turn out to be significant, these can be included by adding another class to the
problem.

While we do not explicitly model additional time delays due to: the time-of-flight
of neutral particles; their dispersion, processing, counting, and integration; and other
waiting times throughout the communication chain, these delays can easily be included
in the dwell times allocated to the targets.

This chapter is structured much like Chapter 3. First, in Section 5.2, we introduce
the Bayes Risk approach to classification, and we show how it fits into the decision
paradigm developed in Chapter 2. Then, in Section 5.3, we address the midcourse
target scheduling problem, and we contrast this problem with the boost phase problem
by showing how their solutions differ.

5.2 The Target Classification Problem

Coupled with appropriate physical and geometric models, the Bayes Risk approach
to classification* is a powerful yet rather straightforward way to obtain optimal object
or feature classifications in dynamic environments where measurements are corrupted
by various non-Gaussian uncertainties and sources of noise, the costs of classification
errors vary considerably, and accurate classifications are needed in real-time.

Before we discuss the statistical situation, let us review the standard determinis-
tic pattern recognition problem (Duda and Hart 1973; Jain 1989): Consider a set
0 = {dli ■ ■ ■ J 6c) of c classes (also called states of nature). In the Target ID Problem,
these are the targets that must be classified or identified. Classes in 9 are observed
or measured via an n-component feature vector x = [x\,... ,xn] ranging over an n-
dimensional feature space F whose points are called patterns. With each class 6i 6 6
is associated a subset Fi C F such that a feature observation (pattern) x is identified
with class 0; whenever x € Fi. Each class 6i is typically an equivalence class whose
points are called class instantiations. In some definitions, a vector [ai,... ,ac] of such
instantiations is also called a pattern, but we adhere to the first definition in this report.

In the statistical pattern recognition problem, classes are similarly defined, although
in cases of unsupervised learning* these classes are not well known. We only dis-
cuss supervised learning in this report, and classes are assumed to constitute a set
6 = {0i,... ,0C}, as before. The measurement process is subject to statistical errors
and the features are characterized by conditional probability densities p(x \ß{) on the
observations, one density for each class 0; € 8. Upon observing x £ F, a more dif-
ficult decision must therefore be made in the statistical case to determine the class
9i associated with this observation. This decision requires the selection of one of m

* Ferguson (1967); Berger (1980); Duda and Haut (1973); Jain (1989); Devijver and
Kittler (1987); Lawler (1971a).

t Duda and Hart (1973); Jain (1989); Devijver and Kittler (1987).

90

possible actions from an action set A = {a\,... ,am} in accordance with a decision
function d : F —» A. This function d is designed to minimize losses resulting from
misclassifications.

To find the optimal decision function d*, let L(a,- |^.) be the loss incurred whenever
action a,- is taken when the true state of nature is Oj € #, and let p(9j) be the a-priori
probability of occurrence of class $j. When very little is known about the d/s, a uniform
prior density is used.

The expected loss associated with taking decision a; when a; is observed is

c

R{ai\x) = YJL{ai\ej)P{9j\x). (5.1)
i=i

Considering that every action a,- is determined by the decision function d and the
observation x G F, the loss function may be expressed as a function L(d(x) |^) of x,
and the conditional risk associated with observation x is

c

Ä(x) = X;^(^)k-M^|x), (5-2)

and the overall unconditional classification risk is

R = I R(x)p(x)dx) = f J2L(d(x) \9)jtßj \x)p(x)dx. (5.3)

The posterior density p(8j \x) can be computed from the prior density p(9j) and the
conditional observation density p(x |^) by Bayes' rule:

P(6> lx) ~ ~~pjx~) ' (5'4)

where

K*) = J>(*k)M)- (5-5)

The density p(8j \x) is called the Bayes a-posteriori (posterior) density, and the risk

R = I £ L(d(x) |öj)K^ \x)p{x)dx (5.6)
JF ;=I

91

is called the Bayes Risk. The decision rule d*(x) that minimizes this risk is the Bayes
Decision Rule, and this rule results in the minimal risk

R*(x) = J2m \ej)p(x I^M^) . (5.7)

A general sketch of the optimal target classification problem is shown in Fig. 5.4.
Although we do not address it explicitly in this report, the choice of target classes and
measurables strongly influences the quality of classifications. Several criteria are used
in arriving at such a choice:

1. Objectives of the classification problem.

2. Target observability and measurability.

3. Economy of parameters used to distinguished one class from another.

4. Discrimination power of the measurables.

5. Computational burden.

6. Overall discrimination optimality.

7. Technological and environmental constraints.

There is general agreement that a mixture of measurements of the radiance, dynam-
ics, and geometry of the targets is needed, but the optimal selection of parameters and
measurables is still an active research topic.

The optimal decision rule d* makes the best use of all the information contained
in the feature vectors x whose values represent physical responses and detections of
the target interrogation process. Our prior knowledge about physical reality resides
essentially in the prior distributions p(0j) and in the conditional distributions p(x |^.)
that model the response of targets whose type is 0j. This knowledge is extremely
varied, including information about the dynamics, basing, targeting, trajectory, and
past history of the objects to be discriminated. Targets that may appear to have the
same physical characteristics, for instance, can often be identified or discriminated only
by knowing their launch points or apparent destinations. Target discrimination thus
involves many different kinds of information that have to be fused into the p(#;)'s and
thep(x lejYs.

In this report, the NPB return signal is the only physical observable considered for
discrimination, and we assume the trivial fusion policy where only the sensor with the
highest signal-to-noise ratio is used. But for target identification (Target ID) during
the boost phase, plume radiance data must be fused with ATP statistics, dynamics,

92

e jo
'S u
e a
c o

Q

c
E
C
2

fa til
©
c
<U

CO

E
o
V o

2 8 S
ST •■< fa e,

I t
& ft >-
is fa -S

til
a es

-W

X

ov
ed

si

on

-a
L* .—

a»
CO

im
p

de

c s fa

c
o

CUDrr

u

.a
O

ON

BX)
fa es

UJ
<x>

X

o—
fa 9
fa O- ä c

1—«

og
at

e
T

ty

pi
ng

)
co

ur
se

)

fc 2S

In
te

(a

ct
i

(m

«I c fa

Q 2
E

© I
C/3
V a<

V >»
S ■**

a "55 at 0> a
u

8>H
fa ■—'
es -M

c/j

8
| 3
fa *J

CM —> v a
■ S

8*
CO

c

es
«J
tS
•-■

VI
es
0
■*->

ej
(so fa
es
H

E
3
o fa a
s o

TS
es
y
C •■«
«3

es

v
6J0
fa

s
"-S
a
o
<u

3

-a
9
O

fa
9
6X1

E

93

basing, and targeting information, and an efficient fusion scheme is absolutely necessary.
We are currently addressing this problem, and a detailed treatment of the Bayesian
fusion issue is presented in a report currently in progress (Corynen 1993).

Returning to the unconditional risk expression of Eq. (5.6), d*(x) can be found
without integration when it is observed that pointwise minimization of the integrand is
sufficient to minimize the entire integral. To find d*, it thus suffices to find the decision
rule that minimizes R(x) of Eq. (5.7) whenever x is observed. This is what is typically
done with the Bayesian approach.

It thus suffices to minimize the conditional risk R(x) when x is observed to guarantee
that total Bayes risk is minimized, and no integration over the feature space F is
required. The optimal target classification rule may therefore be stated as follows:

If feature value vector x is observed, decide that x originated
from a target of type 9{ if, and only if, for all k ^ i,

c c

5>«s) = 6i \9j)P(x |,,.)*(*;)) < E^OO = h \oMx *M6i)) (5-8)
3=1 3=1

This is a simple relationship that can effectively be implemented as a real-time algo-
rithm using recently developed methods in discrete optimization.

The target discrimination problem is thus a statistical decision problem that can be
described as a four-tuple TDP =< X, DM, F, H > in accordance with the canonical
framework developed in Chapter 2. In the following subsections, we use this description
to explain each part of the problem in more precise detail.

5.2.1. The Observation Process X

Two kinds of information are collected during the midcourse discrimination phase:
state information about targets, the sensors, and the NPB platform; and target signal
return information resulting from target interrogations by the NPB. The first is simi-
lar to information collected during the boost phase, and this was discussed in Section
2.2.1.1. The second consists of neutral particle counts received by the sensor network
during target interrogation. These counts are not only determined by neutral particle
physics, but also by the engagement geometry and the orientation of the vehicles in-
volved: they include noise terms due to space background, other regeneration sources
on earth, and detector imperfections. When a given target T is interrogated by an
NPB platform D, the overall particle count of any sensor S is therefore a stochastic
process:

X(XT, XD, XE, XS) = NT(XT, XD, XS) + Ns(Xs) + NE{XE) , (5.9)

the count due only to the target regeneration of neutral particles from the interrogation
pulse, plus the count due only to sensor noise and the noise due only to space and earth
background.

94

In Eq. (5.9), the arguments of the function X have the same meaning as in Sec-
tion 2.2.1.1.

5.2.1.1. The Target Regeneration Count NT- Referring to Fig. 5.5, consider a
platform D located at XQ, whose neutral particle beam directs a pulse along unit vector
ej)T towards a target T located at XT, causing T to regenerate neutral particles, some of
which are observed by sensor S located at Xs- In this section, we derive the probability-
distribution of the particle count NT detected by S, accounting for the physics of beam
generation, propagation, and interaction with the target, and for various acquisition,
pointing, and tracking uncertainties.

Assuming a uniform beam of width ^n, let ID be the beam current and r its pulse
length. In some cases, this "cookie cutter" beam profile is inadequate, and Gaussian
f-spot models can be introduced, as in Corynen and Glaser (1992), but we ignore such
situations. Defining apx =\\ XT - XQ ||, the distance from the NPB platform to the
target, the current density at the target is

jr = i^ amps/m2. (5.10)

niipDdDTJ

If the target projects an effective area AEFF f°r A the effective current received by
the target is

4:AEFFJD_ _ /'s-m
IEFF — —; TT amPs • l5-11;

7!" hpudDTJ

In response to IEFF-, the target regenerates plßFF neutral particles along e^T with
a regeneration beamwidth ipT-, as shown in Fig. 5.5. At a point d meters downrange
along epT, and assuming a uniform current density inside I^T, the current density in
vacuum is thus

7(d) = ^EFFIDP amps/m25 (5.12)

^(^D{E)dDT) (^T(E)d)'

where we recognize that both beamwidths are a function of the particle energy E.

Considering that neutral particle regeneration is a volumetric or bulk mass effect,
elongated ellipsoidal targets regenerate more particles when stimulated along their prin-
cipal axis, and their regeneration angle is smaller along their minor axis. For typical
shapes, the target aspect area is modulated by the factor (1- | 0.5COS#T\D I); and the
regeneration angle by the factor (0.9 cos kßpTS + 0.1),

95

DEWNPB
Platform

D

Earth-centered
coordinate system

Figure 5.5. Neutral Particle Beam (NPB) target interrogation geometry.

96

where

COSOTJ) = exD'eT-
COSÖDTS = £DT'eTS-

k = —.

er is a unit vector along the main axis of T.
es is a unit vector along the main axis of S.
tj) is a unit vector along the main axis of D.

We next consider path losses due to line-of-sight constraints and due to atmospheric
attenuation. Consider Fig. 5.6, where ho is the "1/e height" of the atmosphere (h0 is
typically 110 km), and where two satellites are located at Xs and XT, respectively.

r-,: earth radius

E : earth center

h Q: atmosphere height

Figure 5.6. Calculating path losses in an exponential atmosphere of height ho.

97

To simplify calculations, we assume that the attention factor at an altitude h above
the earth surface is

(5.13) OCATM = (l - e-hlh°) ,

and that the attenuation experienced by 6 beam traveling along an atmospheric path
is determined by the lowest point on the path. For the path Xs — XT in Fig. 5.6,

where

aST = (l - e-
hminlhA ,

hmin = min{ \\ XT ||, || XS || j - rE .

This expression is incorrect for paths like Xs — XT where the lowest point on the path
lies somewhere between Xs and X'T, and may even be inside the earth. If X is the
lowest point on such a path,

X = X'n

, (xs-xTyxT
T+ \\XS-XT* {XS

~
X

T)-
(5.14)

The general expression for hmin is therefore

max{0,min{\\ XT ||, || Xs ||} - rE}, (Xs - XT)-XT < 0 ,
hmin = { (5.15)

max{X — rE, 0} , otherwise

The total path loss factor is the product OLTOT = &DTaTS °f the path loss factors from
the NPB platform to the target and from the target to the sensor. Including the cosine
angular sensitivity es'esT, the effective sensing area ASENSI the particle-to-electron
conversion factor e/q, and the total path attenuation factor OLTOT, the electron count
due to an NPB pulse of r seconds at a sensor located at a distance of dxs =|| Xs—Xy ||
meters from the target is ([x] is the nearest integer to X):

16AEFTASENslpreaTOTJes' ^ST)

q-K\i>D{E)dDTy^T{E)dTsy
(1- | 0.5 cos 9TD |)(0.9 cos k6DTS + 0.1

NT = <
for (-7T/2Ä; < 6Ts < n/2k) /\(es-eST > 0)

0 , for (TT/2A: < 9TS < -7r/2fc) V (es-esr) < 0

(5.16)

98

We shall usually simplify this expression symbolically during further discussions and
write

NT = QRTAEFF , (5-17)

where the meaning of all the symbols is obvious.

The effective target area AEFF is derived from the interaction between the NPB and
the target using geometric arguments, as follows. Refer to Fig. 5.7, where a target T is
shown at a distance dpr fr°m tne platform D. The area Aj) of the beam at the target
is modeled as a circle of radius rj) = CIDT^D/2,

and tne effective particle collection
area AEFF consists of points both in AT and in Aj)—i.e., AEFF = ATC)AD, where
we have slightly abused the distinction between a "set" and an "area" (area being a
measure on a set) in order to simplify our exposition.

NPB
platform

D

Figure 5.7. Simplified model of NPB-Target interaction where the target (T) is modeled
as a projected area A^ of radius rj-.

99

Two extreme cases are of interest in this analysis. The first is a trivial but also
a worst case where no particles are collected by the target because Aj and Aj) are
disjoint, and AEFF — -&T f] ^-D = 0- The other case is the best case, where one area is
a subset of the other, in which case

AEFF = mini AT, AD> = AEFF. (5.18)

These two situations are important in practice when acquisition, tracking, and pointing
(ATP) errors are considered. When such errors are small, a maximal count Nj may
be achieved, but when they are large, N? may equal zero. Such errors are random
variables, of course; thus AEFF *

S
 itself a random variable, and so is the particle count

NT.

To derive the distribution of iVj-, let e^ be the random angular beam direction error in
polar coordinates. Then AEFF — 0 whenever ey, > (rr + rj))/d,DT and AEFF — -^-EFF
whenever e^ < (| rj- — rp \)ldjyx- To compute the probabilities po = prob(A£FF = 0)
and pi = prob(AEFF — AEFF), we assume that e^ is derived from rectangular errors
e^x and e^y whose distribution is Gaussian, with zero means and common variance

°%x = a\y ~ °"2- Since *-4> = (elx + 4y)1/2' the distribution of e^ is the Rayleigh
distribution (Papoulis 1965), and

and

where 7^2 is the CDF of the Rayleigh distribution with variance 0.429 a2 and mean
(<727T/2)1/2.

Based on the behavior of AEFF
as e4> is varied, we assume that the CDF of AEFF is

increasing linearly from AEFF = 0+ to AE~FF, as shown in Fig. 5.8, and the mean of
AEFF then equals

ÄEFF = (l-P0+Pi)(^fL). (5.20)

100

lEFF

1-Pi-

> IAEFFI

A0

Figure 5.8. The cumulative distribution function of AßFF-

Including the non-random factor Qpr of Eq. (5.17), and defining NT = QprAEFF,
the CDF of NT is obtained via a simple change of variables:

(0

Po

FNT(NT) = < Pi

(1 - pi - po)Nt

NT
+ Po

, NT <0

, JVr = 0

, NT = NT

, 0<NT<NT

, NT<NT

(5.21)

Using Eq. (5.19), the mean count NT is thus

NT — QPTAEFF

(l-po + Pi)QprA°EFF

2
(5.22)

101

5.2.1.2. The Sensor Noise Count Ns. The noise introduced in the counting
process by the sensor is due essentially to detector noise, whose statistics are assumed
to be Poisson with parameter \DET- If the noise pulse generation rate is \DET-, the
probability that n detector noise pulses are counted during a time interval of size r is

PDElin; *DET) = e~TXDET^DET)n _ (5 23)

The mean count NDET is r^DET, and so is the variance. For mean values TXQET > 6,
a Gaussian approximation is accurate and will be used.

5.2.1.3. The Environmental Noise NE- Earth background noise results from a
"porthole view" and is based on maximum albedo flux whose intensity is also Poisson
distributed with parameter A#, and this noise falls off linearly in 8SE (see Fig. 5.5), as
follows:

2A0./7T

XE = I —\2- '""■'; ' " -'"^ "'' , (5.24) ^(f-l^l) , O<|0S£|<7T/2

, if not ,

where

*•— -(w)-
One additional noise term that usually yields a Poisson count at the sensor is a

background effect due to man-made nuclear events, but these are not treated in this
report.

5.2.1.4. The Total Count NTOT- The total particle count at a sensor is the sum

NTOT = NT + NS + NE , (5.25)

whose components were derived above.

Since both Ns and Ng are Poisson distributed, their sum NSE is also, and the
random variable NTOT is then simply the sum of two independent random variables,
whose distribution may be found by convolution, as in Fig. 5.9, where the densities
fN (n) and fN (n) are shown.

102

fN0»)*

SE

>■ n

Figure 5.9. The distribution of NTOT
is found by convolution.

Recall (Papoulis 1965) that the pdf of the sum Z = X + Y of two independent
continuous random variables X and Y is

/oo

fx(x)fy(z ~ x)d*
-oo

(5.26)

Although neither /,, nor fM are continuous in the conventional sense, their represen-
T SB

tation as generalized functions (Papoulis 1977) is sufficiently smooth to allow the direct
application of Eq. (5.26). If we let Z = NTOT, X = NT, and Y = NSE,

fx(x) = /^(n) = p06(n) + PlS(n - JV?) + (l^)(U(n) - U(n - JVf)),

and

fv(y) = fN(n) = J2 a(i)S(n - i) ,
SE

i=0

where:

and

a(t) =
e-T\SE(T\SEy

0, x < 0
U(x) = (5.27)

1, x >0

103

To simplify the notation in deriving the CDF of Z, let

Ä! ={X = 0}, A2 = {X = N%}, B1 = {Y = 0}, B2 = {Y = N%},
2

E = f\ÄiA~Bj, and
» = 1
J' = l

Po =p(Ai), pi =p(A2), 9o =p(Bi), 9i =p(B2).

Then

Fz{z) = J2 P(X + Y < z \AiABj)p{Ai A Bj) +p(X + Y<z \E)p{E) , (5.28)
i=3=l

and

Fz(z) = PoqoU(z) + miU{z - N}) + Plq0U(z - JV£) + PmU(z - 2iV£) + P(E)I(z) ,

where
2

p(E)= H (l - piAiMBjj) ,
i=j=i

and
/Z TOO /l _ .. °°

/ k o ° U(x) - U(x - J\#)]T a(i)6(z ~x~ {)dxdz ■ (5-29)
-oo J—oo ■*** *■ * .-_, t=l

The integrand of I(z) may be written as

fNT (l-p) °°
9Z^ = / MO E aÜ)s(z ~x~ ^dx

i=[z-]

= {±w21 E aW'** = max^ w - *?} tfj —
i#4

(5.30)

In conclusion, the CDF of the total count NTOT is

-^ (n) =Po9o*7(n) +Po?i*7(n - JVf) + PiqoU(n - N%)+piqiU(n - 2i\$)+

p(E) r ^E a(i)d2 . (5.31)

104

5.2.2. The Decision Maker DM

In the target classifiction problem, the decision maker DM =< d,L > classifies
observations x € X in accordance with a decision function d from the observation
space X to the parameter space 0, incurring a loss L[9i \ei J when x is classified as

originating from a target of type 6i, whose actual type is 8j (see Eq. 5.6).

5.2.2.1. The Decision Rule d. Recall that the threat is a collection W = {wi :
i = 1,...,\ I \} oi \I \ clouds Wi, each consisting of raj targets of which r; are RV
replicas, di are RV decoys, and n,- are actual RVs. Two cases are considered (we omit
the subscript i):

Case 1 n, d, and r are known.

Case 2 n, d, and r are not all known.

Case 1

Assuming that RVs generate larger counts than replicas or decoys, the rule is to clas-
sify the n largest counts as originating from an RV. More precisely, the observations are
m-vectors (xi,..., xm) € Xm, each component count Xj resulting from an interrogation
of target Tj in cloud w. The action space is the m-dimensional space Am = {0, l}m

whose elements are m-tuples [ai,... ,a,j,... am], where a,j = 0 if the target is classi-
fied as an RV and a,- = 1 if not. The parameter space 0 is also m-dimensional, and
0 = {(0i, • • -,0m)}, with 6j = 0, 1, or 2 if the target is an RV, a replica, or a decoy,
respectively.

The decision rule for Case 1 is thus a vector function d : Xm —» Am, and d =
[di,... ,dk, ■-.,dm], where each d^ : X —> A is a coordinate map taking an observation
xk on Target Tk into a decision dk(xk) = ak € A = {0,1}. If we define dk(xk) = 1
whenever xk is classified as originating from an RV, and dk(xk) = 0 when not, our
decision rule is

' 1, if 3 integers {r = 1,..., n — m}

dk{xk) = < 3 xkr < xk , kr distinct , kr ^ k (5.32)

k 0 , otherwise

In Section 5.2.4.4, we show that this rule is optimal.

Case 2

When n, d, and r are all unknown but m is known, the policy is to interrogate and
classify targets one at a time using a conventional thresholding approach, as sketched

105

in Fig. 5.10. The decision function is now the scalar function d : X —» A, where X and
A are as in Case 1, and the rule is to classify a count NTOT

as originating from an RV
if and only if NXOT > V-

> n
Threshold r\

Figure 5.10. The conditional probability densities of the total count fN (n \g) for decoys

(9 = 2), replicas (0 = 1), and RVs (0 = 0).
'TOT

5.2.2.2.The Loss Function. As we did in the boost phase, we assume that mis-
classified or misidentified RVs leak through. We also assume that all RVs in the same
cloud have the same value V. In contrast to the more general case where losses are
random, even when decisions or actions are known, discrimination losses are fixed once
actions have been taken. Again, we consider the two cases defined in Section 5.2.2.1.

Case 1

When n is known, the defense allocates a fixed budget to a cloud, and false alarms
do not incur any losses per se. But, for every occurrence of a false alarm (a non-RV is
classified as an RV), there must be a misclassification of a non-RV as an RV, since n is
fixed. The total cloud loss incurred when taking action [a] £ Am when the true state
of nature is [0] € 0 is thus

L({a}\[9]) = VRV(^^)+nVINT (5.33)

where ft([a],[0]) is the Hamming distance (Bertsekas and Tsitsiklis 1989) between [a]
and [9], and VRV and VJNT are the costs of leaking an RV and intercepting a target,

106

respectively. For any pair (x, y) of binary strings of equal length, h(x, y) equals the
number of positions (coordinates) where x and y differ.

Case 2

We are only interested in classifying targets as RVs or non-RVs. If a0 and 80 represent
the "non-RV" decision and state of nature, respectively, the losses for individual targets

are:

L(CLQ \6o) =L(ao \8l)=L(üQ \e2) = x(a0 |,o) = VINT ,

l(ä0 Ui) = L\äQ \e2) = L\ä0 |^) = 0 > and

L(äo\90)=VRV. (5-34)

5.2.3. The Feasibility Set F

The feasibility set is used to specify constraints. Although some deadline constraints
exist on the allocation of interrogation times, these are considered in detail during
the target scheduling operation which is discussed in the next major section, and no
constraints are explicitly imposed on the target identification process.

5.2.4. The Optimization Criterion H

Classification performance is judged by the expected (E) classification cost or loss
(L) with respect to the probability measures on observations (Vx)- Hence H =
<L,VX,E>.

5.2.4.1. The Loss Function L. The total cloud loss function £([a]|[ö]) for Case 1
is given by Eq. (5.30). For Case 2, losses can only be combined as risks, by weighing
them by their probability of occurrence, and this is done later in Section 5.2.4.4.

5.2.4.2. The Probability Measure Vx- Different probability functions apply to
each of the two cases. In Case 1, a probability measure is needed on the Hamming
distances X([a], [0]) defined earlier. In the thresholding situation of Case 2, more con-
ventional error probabilities apply. In both cases, the prior probabilities on types [8]
are included by considering Vx as a collection of conditional probabilities Vx \[e], one

for each value of [8].

Case 1

All that is known about a cloud w is the quantities m, n, r, d, but these are assumed
known with certainty. This is therefore a degenerate case of the Bayesian framework
(see Eq. (5.6)) where the prior probability p([8]) = 1 for any combination of types 0;
that satisfies the m, n, r, d requirement, and p([8]) = 0 otherwise.

107

In Section 5.2.4.3 below, we show that our decision rule d is optimal and that the
only probabilities needed are the probabilities p(h([a], [6])) on the Hamming distances
h([a], [$]), and these are derived as follows.

Recall that NTOTRV = NRV + NSE, the total count received from an RV, and
similarly for NREP and NQEC- The probability pRV that any RV is correctly identified
is the probability that no decoy signal (NQEC)

or no replica signal {NREP) exceeds the
RV signal NRV, since the noise term NSE drops out because it is shared by all signal
returns. Thus

r id r "T
pRV = \p(NRV > NDEc)\ • [p(NRV > NREp)\ . (5.35)

The probability that v out of n RVs are correctly identified is

PRv=0(PRv)V(l-Pnv)n-V' (5-36)

and the mean quantity of identified RVs is

HRV = npRV. (5.37)

The probability that n — v out of n RVs are incorrectly identified in thus also pRV(v),
and

/ \ (Pnv(n-k)' * = 0,l,...n
p(h([aUß]) = 2k) = I _ . (5.38)

10 , otherwise

The derivation of P(NRV > NQEC) and P(NRV > NREP) is a bit lengthy. It is
reported in Appendix E, where a convolution approach is taken using Eq. (5.32) (also
see Fig. 5.8).

Case 2

When no prior information about the parameters 6j may be assumed, we use a
uniform distribution on 6j. The conditional probability p(x \$.) for Eqs. (5.4) and (5.6)
are simply the conditional count distributions fM (n), fM , and fM derived earlier

^RV "REP "DEC
(see Eq. (5.21)).

The probabilities of incurring the losses of Eq. (5.34) are as follows:

P{ao \e0)(rj) = p[NToTRV > v) = 1 - FNTOTRV(V),

P(«0 löo)(V) = P\NTOTRV < *?) = FNTOTRV(V),

108

p(ao \go) (»7) = p([NTOTREP > fi) v [NTOTDEC >yU

= 1-FN (V)FN (rj)
yTOTREP "TOTDEC

p(ä0 \go)(?y) = p[(NTOTREP < v) v [NTOTDEC >V)J,

= l-(l-F„ (17)) (J^ (17)). (5-39)
V NTOTREP / \ "TOTDEC /

5.2.4.3. The Objective Function 7?.. Because prior knowledge about threat ob-
jects influences the overall classifiction risk, each case has a different objective function.

Case 1

Referring to the general formulation expressed in Eq. (5.6), and omitting the constant
interception costs (VINT), the risk for one cloud is

71= I £j&(d(x)|,)p(*|,M*)<* X

yÄvÄ(d(x),ö)p(Ö,x)dx

Exploiting the discrete structure of h(a,8), this risk equals

% = Y^L J2 2kp(h(a, 9) = 2k) . (5.40)
Jfc=0

Using Eqs. (5.36), (5.34), and (E-7),

KnVRV(l-pRV), (5-41)

and the total risk for \I\ clouds is

M

KTOT = J2ni- (5-42)

109

Case 2

In the thresholding case, targets are classified one at a time, and the cloud risk is the
sum of the member risks. The binary nature of d allows the same form as in Case 1.
For a single cloud element and for a threshold 77,

1 2

1 2

:"=0 j=0

C1" FNJIM**) + (i" ^fo) \J*))0- - P«

+ VRVF Mp(60). (5.43)
"ÄV

For a threat consisting of 11\ clouds W{, each of which contains m,- elements Tij, the
total classification risk is

^ = EE^- (5-44)
»■=1 3=1

5.2.4.4. Optimizing Classification Risk TZ. Both cases must be approached
differently because, while there exists a closed form solution for Case 1 (the rule of Eq.
5.30), a recursive numerical method must be applied to Case 2.

Case 1

To show optimality of the decision rule for this case, we use the simple fact that
signals (N) received from RV's are larger than those from decoys or replicas. Our rule
d*(x) of classifying the strongest signals as originating from RV's implies that,

(VJfc # 0) (p*(Jfc) = p(h(d*(x),$) = k)< p(h(d(x), 8) = k)= p(k))

for any other rule d. Hence

771 771

Tl{d*) = Y^ kp*(k) < J2 kP(k) = Kid) (5.45)
jfc=o ifc=o

Note the implied assumption that variations in Aßpp for different target types cannot
reverse the signal dominance of RV's over other targets. But in extreme and rare cases,
AEFF could be zero for an RV, and non-zero for a decoy or for a replica, for instance.
We ignore such situations.

110

Case 2

Because closed-form minimization solutions to Eq. (5.43) exist only for the simplest
Gaussian cases, and because each cloud wi will usually have a different optimal thresh-
old 77*, a numerical approach is required for this case. A simplified flow of the algorithm
is shown in Fig. 5.11, and the meaning of the various block inputs and outputs should
be clear from our earlier discussions in this section. But note that our data fusion
approach is trival in this first verions of the algorithm, in that we select the output of
the sensor that has the highest signal-to-noise ratio NT/(NS + NE) (see Eq. 5.25).

5.3 The Target Scheduling Problem

During the midcourse discrimination phase, the objective is to minimize the total
risk

TITOT = KC + Rr, (5-46)

where TZC is the classification risk analyzed in Section 5.2, and KT is the rejection risk
defined in Chapter 2, and analyzed in this section.

As discussed in the introduction to this chapter, both these risks are sensitive func-
tions of the interrogation dwell time vector r = [r,j : i = 1,..., m, j = 1,..., m], with
1ZC decreasing as r^ is increased and TlT decreasing as T{j is decreased, as shown in
Fig. 5.2. But, as for the boost phase, Tlr is also a function of the sequence TT in which
targets are prosecuted, and of the rejection criterion r. In this section, we minimize
the rejection risk Tlr by finding optimal values for 7r, r, and r, and we combine this
minimum risk with the minimal classification risk derived in Section 5.2 to obtain the
minimal total midcourse discrimination risk TZ^OT-

5.3.1. Selecting the Permutation 7r

Exactly the same methods are used to find the optimal target sequence it during the
midcourse phase as were used during the boost phase, but they are applied in a slightly
different manner. During midcourse discrimination, a two-level hierarchical approach is
used in which the nodes or vertices corresponding to the sequence IT are target clouds,
and these are located on the higher level of the hierarchy. During the construction
of some tour 7r, each higher-level node is decomposed into a lower-level tour through
the individual targets that constitute the cloud represented by that higher-level node.
Retarget times and dwell times are treated similarly, with the total time to complete IT

equal to the sum of all inter-centroid retarget times and dwell times at each centroid.
While these retarget times are treated as they were during the boost phase, the dwell
time for any cloud is the sum of the dwell times and retarget times of its constituent
member targets, and these are derived from physical and geometrical arguments in a
later section. Thus, if tj„ is the retarget time from cloud wu to cloud wv, if is the
dwell time for the cloud wu, t%jk is the dwell time for the jih = target tuj in cloud wu,

and t^-k is the retarget time t^-k from Tuj to T«*,

111

c

ut
e

at
io

s
a, o r/1 *t3

om

si
fi 3 ■

O

U 8 hi o
o

H

PQ

pr1

o
t-t

1
s

■ 1—1

>

O 3 -

Is

§s ̂ •d c i i-i

> 2 o a
ca ö 5 £

£1
3|

xi pq
T3 05
8«
'S u

.S OÜ
s .s
8 S «
V3 ..*

•n "o
oS •s o
3 »
£ 2? '=« a
TO jg

fan u-

a-s

„• S

i
00
E

112

mu mu—1

and the total tour time is

** = £*? + £'?•• (5-48)

Specific expressions for t%jk are derived in the next section, where target rejection is
discussed.

5.3.2. Target Rejection

Whenever one or more targets cannot be identified or classified within their allocated
time window, some must be ignored, or rejected. This process is almost identical to
that employed during the boost phase, except for the fact that only target clouds are
rejected and that the computation of dwell times is different. An individual target is
rejected if, and only if, its parent cloud is rejected, and terms in the rejection ratio now
refer to clouds instead of targets.

For midcourse discrimination, the rejection ratio for a target cloud w consisting of
m targets is

tD + AtR V J

where

a is the cloud deadline hardness,
Vj is the value of target Ty,

Tlc is the cloud classification risk (see Eqs. (5.42-5.44)),
tD is the cloud dwell time (Eq. (5.47), Section 5.3.1), and

AtR is the cloud retarget time rejection gain.

5.3.2.1. Calculating Cloud Dwell Times. Cloud dwell times are sums of target
dwell times and retarget times, as Eq. (5.45) shows. Target dwell times are determined
in the outer optimization loop, as we discuss in the next section, and every target is
allocated the same dwell time during any iteration in that loop. But retargeting times
are a bit more complicated since they depend upon the spatial distribution of targets
within a cloud. Whereas the rise times and settling times are essentially the same for all
targets in a cloud and need only be multiplied by the number of targets in the cloud to
obtain a total cloud rise and settling time, the travel time from target to target depends
more directly on the cloud geometry and on the method used to sweep through the
cloud. We examine two cases.

113

Case 1: Uniform distribution inside a sphere

We assume that targets are distributed uniformly throughout a spherical cloud of
radius ro, and we compute the probability density of the distance from cloud center to
any member target in a projected plane as would be seen on a two-dimensional focal
plane array on board the NPB platform. We need to assume, of course, that the clouds
are sufficiently far away from the platform to assure that the image on the focal plane
array is in fact the mathematical projection of (x,y,z)-points into (x, y)-points.

Starting with a uniform density

ft \ i Z—5" > x2 + y2 +z2 <rl

10 , otherwise

the marginal density in the x-y plane is

(5.50)

fxy(x,y)= /
J—a

fxyz(x,y,z)dz
3(r0

2 - x2 - y2)

27rr0
3 x2 + y2 < r2

otherwise
(5.51)

where a r\-x2 -y2.

To get the density of R = (X2 + Y2)1'2, consider a differential area dxdy = rdrdO in
polar coordinates. Then (Fig. 5.12)

/•2JT

ftir) = /
Jo

3(r2-ryf2rd9 \ 3r(ro ~ r2)1/2

27rr3
i 0 < r < ro

, otherwise
(5.52)

and /fl(r) has a maximum at r = ro/y/2.

The expected value R of R is 37rr0/16 « 0.59 ro, and its variance is only 0.04T-
2

,.

Considering that the retarget times of objects near the center are relatively small, a
good approximation for our purposes is thus to assume that all targets are projected
into a circle of radius 0.59r0. Including the trip to and from the cloud centroid, the total
retarget distance for a cloud is thus (2 + (0.59)27r)ro, and the total angular distance
travelled is 5.70ro/d/xr rad, where dj)x is the platform-to-cloud distance.

114

fN(D

R = 0.59 r0

Figure 5.12. Probability density function of the target-to-cloud centroid distance in
the projection plane. The expected value of R is 0.59r0, and fR(r) has a maximum at

r* = r0/V2.

Case 2: Uniform distribution on the surface of a sphere

In spherical coordinates (r, 0, <f>), targets are distributed uniformly in 9 and </>, at a
constant distance r from the cloud centroid. Since 9 and <j> are independent random
variables, their joint density is /$0(> , 9) = 1/2TT

2
, the product of two uniform densities

Ü4, and Ug on the intervals (0, T) and (0, 2TT), respectively. The marginal density of $ is
thus simply U$/ir, and, using the same assumptions as for Case 1, we may project the
spherical distribution onto any plane to obtain the pdf of the projected radial variable
r, as we did for Case 1. We may thus choose the plane for which 0 = 0. Using the
conventional transformation to rectangular coordinates (x,y,z),

y =ro sin <f> sin 9 ,

x =ro sin <f> cos 9 ,

z =rQCOS<f> ,

r =(x2 + y2)1/2 = r0(sin 92 sin 92 + sin 92 cos 02)1/2 = r0 sin 9 . (5.53)

Thus r = r0sin^> (regardless of 0), and the cumulative distribution of the radial

distance r is
T

FR(r) = p(R <r)= p(r0 sin $ < r) = p(sin $ < —)

= P ($<sin-(i-)A($>sin-Q)]

= 2p(0 < $ < sin"1 (—) < TT/2)

115

=!(«<£))■ ^ (sin„ x (

where sin"1 and sin J1 are the primary and secondary inverses of sin, repectively. Thus:

fdr) = F'R(r) = y(rj _
2
r2)1/2 . (5.55)

The expected value of i? is 2ro/7r, so, including the start from and return to the
cloud centroid, the mean total angular displacement for the cloud is

&TOT = —, rad . (5.56)
dDT

The results for these two cases can now be combined with platform slewing param-
eters to obtained slew times between targets, as we did for the boost phase. These
times are simply the sum of the displacement times derived in this section (angular
displacement divided by the steady state angular slew rate of the platform), and the
rise and settling times discussed in Section 2.2.1.3.1.1.

5.3.3 Selecting the Dwell Time Vector tD

Just as the leakage probability pi is the most effective scalar control variable during
the boost phase, dwell time tD is the best choice for the midcourse ID phase because ID
classification risk 7lc is very sensitive to tD, and the target rejection risk 1ZT is almost
exclusively determined by the engagement time line. Optimizing tD could, with some
abuse of language, be referred to as "global optimization," as we did in the boost phase
section (Section 4.3), and many comments in that section apply here as well.

As Fig. 5.13 shows, the outer loop of DDTS in the midcourse phase is rather straight-
forward, given the extensive discussions in previous sections. Total dwell time r is
optimized by minimizing the total risk TITOT-> the sum of rejection and classification
risk, using the BRENT algorithm, a method for scalar optimization (Brent 1973; Press
et al. 1988).

116

Threat
information
 >

Rejection
criterion r

Compute
classification

risk 72 c

£c
—>H

i
Compute
rejection
riskR

<^E

= £C
+#r

t
Target

sequence
Platform %

parameters

Minimum risk "R TOT

Optimal dwell time t"

Figure 5.13. The total dwell time r is optimized in the outer loop and equally divided

among all M targets in the threat.

The Brent algorithm is very robust to sharp derivatives, and its application to a
variety of problems has always produced rapid convergence, usually in just a few steps.
It has also demonstrated surprising forgiveness in addressing problems with multiple
local minima, as large as the local "wells" are small compared to that of the global
minimum.

117

6. Testing the DDTS Algorithm

6.1 Introduction

One major project goal was to deliver a target scheduling software package to the
Rome Laboratory for incorporation in a simulation testbed and for /9-testing towards
brass board implemention as a real-time algorithm. The preliminary tests reported in
this chapter were conducted with two objectives in mind. First, verification and vali-
dation of the internal structure of DDTS was essential to assure that desired paramet-
ric relationships were faithfully implemented in the algorithm. Second, experimental
evidence was needed to estimate the time and space requirements of the algorithm.
Even though a mathematical analysis predicted an expected boost phase complexity of
0(n3), where n is the number of targets processed, additional assurance was sought by
exercising the algorithm with a threat driver designed to force the algorithm to reveal
its worst behavior. Considering that such a driver was unavailable, the THREATSIM
threat simulator was developed on this project to accomplish this driving function.
This simulator is described in Section 6.2.

In Section 6.3 we report the results of testing the DDTS algorithm for the boost
phase. No midcourse issues were addressed during the testing phase.

6.2 The THREATSIM Simulator

The THREATSIM simulator is currently configured to simulate threats in the boost
phase. It is a rather straightforward simulator whose objects (targets) are points with
6 degrees of freedom, capturing both the position and velocity of targets in 3 dimensions.
Additional target features include type, value, vulnerability, deadline, release time, ID
probability, aspect angle, and deadline hardness.

THREATSIM generates threats in accordance with a specification of two shape fac-
tors, the static shape and the dynamic shape. The static shape of a threat defines
the geometric distribution of targets at any given time. A linear shape, for instance,
means that all targets lie on a straight line, a spherical shape on a sphere, and so on.
The dynamic shape specifies how the relative position of targets changes with time. A
divergent shape, for instance, means that targets are leaving their static shape as time
evolves.

THREATSIM has a two-level hierarchical structure where entire target clusters are
treated as primitive objects at the higher level, and individual targets are the prim-
itives at the lower level. Our approach is to assign a nominal motion to each target
cluster, and to simulate the motion of each individual target in the cluster by adding
a disturbance to that nominal motion.

119

Considering that the principal performance measure for a DEW platform is expected
leakage risk, additional parameters must be supplied to DDTS since risk is the result of
an interaction between targets, sensors, the environment or background, and the DEW
platform.

Our discussion is organized as shown in Fig. 6.1.

Section 6.2.1 Scenario
definition

Section 6.2.2
Static

structure
Dynamic
structure

Section 6.2.3 Static
structure

Dynamic
structure

jfc^^r'

Section 6.2.4 Other target scheduling parameters

Parameter
specification

Cluster
centroid

simulation

Cluster
element

simulation

Schedule
modeling

Figure 6.1. Organization of Sections 6.2.1-4.

6.2.1. Scenario and Parameter Specification

For target scheduling purposes, engagements are defined parametrically by specifying
a threat, a background and environment, a network of sensors, and a DEW platform.
In this section, we list the parameters assigned to each of these major elements; hypo-
thetical values for simulation purposes are included in parentheses, together with their
names or labels.

Whereas the simulation of objects in their boost phase is approximated by second-
order rectilinear dynamics, we use the conventional characterization of satellite con-
stellations (Corynen and Glaser 1992) discussed below to simulate clusters of targets
in the post-boost or midcourse phase. The THREATSIM simulator drives the DDTS
algorithm by generating straight-line boost phase segments that converge to a spherical
orbit after a controllable amount of time has elapsed.

120

As shown in Fig. 6.2, our reference coordinate system is earth-centered, with the
x-axis containing points with 0 longitude (Greenwich) and 0 latitude. The y-axis
has direction 90° longitude and 0° latitude, and the z-axis points to the north pole
(0° longitude, 90° latitude).

Reference plane p
(x-z plane)

(90° long, 0° lat.)

(0° Ion;

Figure 6.2. Defining the earth-center coordinate system E.

After the boost phase transients have elapsed, targets enter the midcourse, where
they are assumed to move in a plane, their orbital plane. Such a plane is specified
with two rotations of the reference or primal plane, the XE~ZE plane in this discussion.
The first rotation is a rotation of the primal plane about the z-axis through an angle
0, called the longitudinal rotation angle, in the clockwise direction about the z-axis as
seen from the point z = -oo (counterclockwise otherwise). The second is a rotation
of the new plane about the X£-axis through an angle 7, called the inclination angle
(in conventional coordinate systems, this would actually be the complement of the
"inclination angle"), in the clockwise direction about the x^-axis as seen from the
point x = -00. While the first rotation produces a new coordinate system Ei, the
second produces the coordinate system E2 where satellites move in the a;£2-Z£2-plane
(see Fig. 6.3).

The motion of objects in their P2 plane is specified by an initial angular position in
their orbital plane, an offset or phasing angle relative to other orbits, and an angular
rotation rate WE2 about the origin (25). Both are specified by their orbital radius r.

121

Second
rotation
plane P2

First
rotation
plane Pj

Figure 6.3 Satellite orbital planes P2 are specified by two sequential rotations, the first
about Z£ and the second about X£x.

The angular rates u along their circle of motion can be derived from elementary
physics:

 jß— rad/sec , (6.1) u

where (using the MKS system of units)

1" = f£ + h, the orbit radius of the object (m),
T£ = 6367.65 x 103 m, the polar-equatorial average of the earth radius,

h is the orbit altitude above earth surface (m) (typically 400 x 103 m),
M = 5.9763 x 1024 kgm,
G = 6.67 x 10-11 Nm2(kg)-2 , and

MG = 2.00 x 107 kg3/2.

The rotational (orbital) period is

nn 27T . .
T = — (sec) ,

w
(6.2)

122

and if there are m vehicles in the same orbit, their (uniform) angular spacing (in the
XE2-ZE2 plane) is simply

Mk,k+i = — rad , (6.3)

where k is the counting index of the satellites sharing the same orbit.

To allow an offset or phasing between rings, we introduce a phasing angle <f>° for
each ring, effectively a rotation of the ring about its yE2 axis. By specifying these
angles, the first element of ring j is located at an angle <j>° from the xE2 axis (clockwise
rotation about the yE2 axis as seen from y = +00). Since the rings are well-ordered in
accordance with longitudinal rotation, the distribution of targets in each ring is fully
specified.

For a given ring of density rrij, therefore, the direction angle (in the XJ—ZJ plane) to
the initial (t = 0) position of target kj in the ring is simply

(fc^l)^ *=1,...fm..
J m; J

Summarizing, the motion of an object k is described by a vector in the Ei system:

*E2ß) = (xE2>k(t), yE2tk(t), ZE2tk{t))T » (6-4)

where
xE2>k{

t) =r cos aE2ik(t),
zE2k{t) =r sin ocE2>k(t),
VE2,k(t) =0,

<*£2(i) = k>£2* + <f>k + ^°) and
u>£2 is the angular rotation rate given by Eq. (6.1).

To express Xß2(t) in the primal earth-centered system E,

XE(t) = Rot-1Rot:1XE2(t), (6.5)

where

RotZ1 = Rot?, and Rotz =

in which 9 is the longitudinal rotation angle,

Rot'1 = Roß, and Rotx =

cos 9 sin 9 0
— sin 9 cos 9 0

0 0 1

1 0 0
0 cos 7 sin 7
0 — sin 7 cos 7

(6-6)

(6.7)

123

in which 7 is the inclination angle, and Xß2(t) is a column vector.

Conversely, to express a vector XE in the new coordinate system E2,

XE2 = RotxRotyXE . (6.8)

Now that we know how to specify the motion of individual targets, a constellation
of targets is specified by five parameters:

- An inclination angle (7).

- A quantity of rings (rar).

- A set of ring elevations {rj, j = 1, ..., UR] (maximum altitude above earth).

- A set of ring sizes {nj, j = 1, ..., UR] (quantity of satellites in each ring).

- A set of phase angles {(ff-, j = 1, ..., UR}.

For each constellation, the inclination angle (7) is fixed and the quantity UR of
rings determines the angular separation A0 in the xE2-yE2 plane (longitudinal rotation
angle). Clearly,

A0 = — rad . (6.9)
riR

Next, the ring elevations rj determine the motion of each object in the ring, and
the ring sizes ny specify the angular spacing (AÖ,;J+i)j = 2ir/nj) between objects in
ring j. Conventionally, any object in a given ring is identified by a position number k
(a "counting index"). This number is determined by the first object in the ring and
the quantity of objects preceding the given object in the X£2-ZE2 plane as shown in
Eq. (6.4).

Another important coordinate transformation problem is to transform vectors in the
earth-centered system E to and from the rotating platform coordinate systems ER and
ET (we shall simply use Ep in this discussion). To start, we assume that the negative
z-axis of every target goes through earth center, and that its y-axis is aligned with its
velocity vector. Given the platform's position in system E, its coordinate system is
thus fully specified, as follows.

In the E2 system defined by the orbital plane of a platform, the position of the kih

platform is

X£(t) = rcos(u>* + (j>k + 4>°) eE2X + rsin(u;i + <f>k + <f>°)eE2Z , (6.10)

where r and u> were defined earlier.

124

The velocity is

'P

dt

+ (cosO* + <f>°) cos ut - sm(<j>k + (f>°) sin u>t)e£2z -(6.11)

X£(t) = —|äü = wr[- (cos(fo + <£°) sin tot + sin(fo + <£°) cos u;t)e£2r

Given the orientation of its z-axis and y-axis in the E2 system, the unit vectors
specifying the platform's coordinate system are the unit basis vectors

E2z{) ~ II *&(*) || '

P ^ Xj(t) (6-12)

II *£« II '
eE2y(t) ~ • ■ yp

eL(*) = e£f(t)xeg2i(*).

Expressed in system E, whose unit basis vectors are e£z, e£y, e^z, and omitting
time t for convenience,

e£2x = Rot^Rot^e^ ,

Similarly,

and

eIL = P2ie£;x + P22e£3, + P2Z*Ez

eEiz = PMeEx + PZ2^Ey + P33*Ez ■ (6.13)

Now let Xp be some vector in the platform system EP. If XE is the same vector
expressed in the coordinate system E, then

XE = PTXP + Rorz
lRotZlXPE2 , (6.14)

where P = \pij], the matrix of coefficients pij defined above and located in row i and
column j, and Xf is the position of the platform. Hence,

Xp = P[XE - Rot^Rot^X^} , (6.15)

125

and P provides the rotation required to express any vector in E as a vector in the
rotating platform coordinate system E£.

6.2.1.1. The Threat. Threats are defined by specifying global characteristics and
individual target characteristics.

6.2.1.1.1. Global Threat Characteristics. These are specified with the
following parameters:

1. Total quantity of targets (N=100).

2. Quantity and size of target clusters (M; = 10) (Clouds in the midcourse).

3. Start time for launch (t0 = 74 seconds).

4. Threat shape (discussed below).

5. Shape of threat dynamics (discussed below).

6. Cluster centroid position and motion (X, X).

7. Cluster initial position and motion (Xo — (—5000,0,0), X = (1,1,1) km/sec).

6.2.1.1.2. Individual Target Characteristics. Every target is described by
a multidimensional vector whose components are:

1. Position vector in 3 dimensions (X).

2. Velocity in 3 dimensions (X, expected cluster perturbation of 1 km/sec).

3. Deadline and release time (<D,*R).

4. Dwell time (tD, computed on line).

5. Leakage loss/value (V = 1).

6. Energy consumed in response to DEW illumination (E).

7. Probability of identification (Pjj) = 1, except when used as independent variable).

8. Type (6 is the same for all targets).

9. Deadline hardness (ap = 1 for all targets).

10. Vulnerability radius (ry or r^jM, 1 meter).

11. Aspect angle (computed from (1) and (2)) (ax).

126

12. Hardness mean and variance (//# = 105J/cm2, <r# = 104 J/cm2).

13. Initial position and velocity (Xo,-Xo).

6.2.1.2. Background and Environment (B&E). During the boost phase, B&E
noise and disturbances are included as statistical noise terms in the sensor and DEW
platform ATP parameters. During midcourse, additional Poisson noise terms are added
to the neutral particle detection signals at the sensors, and atmospheric attenuation
factors are also included.

6.2.1.3. The Sensor Network. The data fusion policy in this report consists of
choosing the sensor whose signal is largest. Therefore, only one sensor is considered
herein, and its parameters are:

1. Sensor position (Xs) and orientation (ßs)-

2. Sensor velocity (Xs) and rotation rate (us)-

3. Discrimination matrix (its entries are probabilities p,y and costs c^ of classifying
Target i as Target j).

4. Sensor beamwidth and total field of view (FOV).

5. Tracking bias and uncertainties.

6. Initial position and velocity (Xso>Xso)-

6.2.1.4. The DEW Platform. The DEW platform performs various operations
that are critical to target scheduling. The platform consists of three major hardware
components: the main platform (P), the forebody (FB), and the fast steering head
(FS). Each of these components and functions are characterized by several parameters:

1. DEW beamwidth (<f>D or 6DEw = 0.15firad).

2. Wavelength (A = 3.5pm).

3. DEW and platform maneuvering (thrust) power (PQ and PT).

4. Bias and jitter (be = 10~7rad: e0 » N(0,10_7rad)).

5. Energy consumed and energy limit (E and Emax)-

6. Platform tracking point bias and jitter (ex, (?T)-

7. DEW efficiency (rjDEW = 0.9).

8. Maximum angular displacement (l/££. = 1 rad, U™x = 10-3 rad, U%ax = TT rad).

127

9. Displacement input saturation level (UF
AT = 10 3 rad, UFB

T — 10 x rad, UP
AT =

1 rad).

10. Maximum slew rate (c£fx = 10 rad/sec, c£fx = 1 rad/sec, c^ax = 0.1 rad/sec).

11. Pointing variance (eFS = 10"7 rad, eFB = 10"3 rad, ep = 10_1 rad).

12. Damping constant (SFS = 8FB = 8P = 0.5).

13. Critical frequency {UJ
FS

 = 104 rad/sec, uFB = 103 rad/sec, u>p = 10 rad/sec).

14. Position and velocity vector (X,X).

15. Initial position and velocity vector (Xo = (103,104,0) km, Xo = (-10,10,0)
km/sec).

16. Optics diameter (D = 8 - 13m).

17. Optics power (P = 1.5 x 107w/ster.).

18. Propagation attenuation constant (kx = 1014m2).

6.2.2. Simulating Cluster Centroid Motion

The motion of clusters is simulated by randomly selecting their centroid position and
velocity to achieve various shapes or "profiles".

6.2.2.1. Cluster Centroid Position. We have k target clusters C = {ci, ... c,-,
^■v .■*< ^"V 1^~

...Cfc} whose position centröids X = {Xi,... ,X;,.. .Xjt} are randomly selected to
obtain combinations of three basic shapes: linear, spherical, or random. Usually, the
position "profile" thus obtained consists of a linear segment during boost phase followed
by a circular segment reached asymptotically during midcourse.

6.2.2.1.1. Linear Profile. For this profile, the centroid position Xi of cluster
Ci is generated by the recursive law

Xi = Xi-i+aiVi, . (6.16)

where

X\ is the specified position of the first cluster, and
Si ~ U[aa,a{,], the uniform distribution in [a0,aj], —oo < aa < aj < oo .

128

The vector V is the direction vector for C, whose components V^, Viy, and VJv have

a uniform distribution in the intervals 0 < Vxa < Vxb, 0 < Vya < Vyb, 0 < Vza < Vzb-
The mean direction vector is

'Vxb-VXa Vyb-Vya Vzb-Vza" - (Vxb ~ xa yh ~ y° *6 ~ Vga\
~ \ 2 ' 2 ' 2 y' V V 2

and simulations are typically designed so that V lies along a vector from the cluster
launch point to the final burnout point.

6.2.2.1.2. Circular Profile. Using the spherical coordinates notation of earlier

sections, ^ ^
Xi = (fi, 8i, fi) ~ (£;, yi, z{) ,

where

X{ — Fj sin <^i cos $i.

y,- = F,- sin <f>i sin 0^.

2i = F,cos^,-.

Consistent with our definition of constellations, the circular position profile is ob-
tained as follows: First select an initial inclination-elevation-phasing triple (71, r\, 9X)
for cluster C\. This equals the terminal (booster burnout) point of a preceeding linear
phase. The remaining cluster positions are defined recursively as

(% ri, 3?) = (7,-1, fi-u *?-i) + (A7i, AFt, A?,-) , (6.17)

where the perturbation terms are uniformly distributed in the intervals [70, 7&], [ra, n]
and [<f>a, 4>b], respectively.

6.2.2.1.3. Random Profile. Cluster centroids for this shape are normally
distributed about some normally distributed position X\ of the first cluster C\:

Xi = Xi_i + Wi u (6.18)

Wi = (Wix, Wiy, Wiz),

Wü, wiy, wiznN(m, *i).

6.2.2.2. Cluster Centroid Velocity. Two types of velocity profile are considered
to simulate the motion of target clusters, the convergent linear dynamic and the conver-
gent circular dynamic. Target scheduling algorithms are not as sensitive to the detailed
physical behavior of targets as tracking algorithms would be, and in constructing threat
motions, THREATSIM is allowed to violate the laws of dynamics in order to obtain a
synthetic threat that will stress the DDTS algorithm beyond any level obtainable with
more "physical" simulators.

129

6.2.2.2.1. The Convergent Linear Dynamic. This dynamic does not con-
tain any acceleration terms and is therefore an obvious simplification of what may
happen during the boost phase, but it is satisfactory for scheduling purposes. If ex-
tended far enough into the future, it forces the centroids to converge along specified
fixed unit vectors t{. For the ith cluster,

Xi(t) = 77,-c,-(l - e-*/T) + e-V'Xio , 0 < t < tB , (6.19)

where

m ~ Ubla, m]> Va < m-

Xio is the initial velocity of Ci (specified)
T is the convergence rate factor.

6.2.2.2.2. The Convergent Circular Dynamic. To model the transition
from the boost phase to the orbital phase, THREATSIM transitions (nonsmoothly)
from the terminal state of a linear motion to a constant radius circular orbit. Let the
duration of the boost phase be tB. Then the position of d at time tB is

Xi(tB) = r)itBa + r(Xi0 - Viei)(l - e~tB/r) ,

= (xi(tB), yi(tB), Zi(tB)) . (6.20)

In spherical coordinates,

xi(tB), = (fi(t5), 6i(tB), <t>i{tB)),

where

ri(tB)2 = xKtB) + yKtB) + zKtB),

^) = *»-,®)>
?j(<B) = cos-l(|M).

The transition into circular orbit is done by clamping f;(i) and the angular rates

6i(t) and <f>i(t) at their terminal values (achieved at t = tB) for all t > tB.

The angular rates are computed using the relationships

d_
dtl

and
d\ -i /«(*)\1 _ / v(t) \/(v(t)u'-u(t)v'(t)\

' \v(t)J\~ \(vHt)-uHtW/2)\ vHt))■ K- }

\x(t))\ ~ Vx2(<) + y\t)) V x\t)) '

cos
dti \v(t)J\ \(v2(t) - u2(t)y/2 J \ v2(t)

130

6.2.2.2.3. The Divergent Linear Dynamic. In an earlier section (see
Eq. (6.16)) we described the linear initial position profile for cluster centroids. This
profile has a mean direction vector v. The divergent dynamic attempts to drive clusters
away from v by forcing this motion towards a plane orthogonal to that vector, like
Eq. (6.19), forces centroids towards the unit vectors e;. This produces irregular threat
profiles that tend to stress target scheduling algorithms since there is little structure
to exploit in such expanding dynamical threats.

Starting with the reference vector V = V, consider any other vector V such that
V ^ kV for any real number k. Then V x V is orthogonal to V, and (V' x V) x V is
orthogonal to both V x V and V. Any vector in any plane orthogonal to V is thus a
linear combination

W = £ei + £e2, (6.22)

where

V'xV
ei =

e2 =

|| V x V || '

(V x V) x V
|| (V x V) x V

and £i and £2 are two real numbers.

To generate divergent targets, we select any such vector V, and we sample £1 and
£2 from the uniform distributions U[£ia,£ib] and U[&a, &&]■

6.2.3. Simulating Target Motion

Individual target positions and velocities are simulated as Gaussian perturbations on
the centroid motion of their parent cluster. Each cluster C{ has Mi elements or targets,

Ci = {Tij:j = l,...,Mi},

whose positions and velocities are Xij and Xij, respectively.

6.2.3.1. Target Positions

The positions of targets in a cluster d are modeled as Gaussian deviations whose
means are uniformly distributed. For target Tij,

Xij = Xi + AXij, (6.23)

where AXij = (AXijx, AXijy, AXijz), and AXiju « N(fHju, <Ty«) , u = x,y,z.

131

6.2.3.2. Target Velocities. For velocities, a similar approach is used:

Xij^Xi + AXij, (6.24)

where AXij = (AXijx, AXijy, AXijz), and AXiju = iV(/i,-JU, &iju).

6.2.4 Modeling Deadline and Release Times

We assume that all targets that belong to the same cluster have the same deadline
and release time.

6.2.4.1 Deadline Simulation. Considering the enormous permutations of dead-
lines, that could be generated, some deadline structure is added by assuming that, in
the mean, targets farther along their trajectory have less time-to-go than earlier targets.
If d,- is the deadline of cluster C;, i — 1, ...,&, we employ the following simple additive
scheme:

di = di+1 + Ad,-, i = k - 1,..., 1, (6.25)

with Ad,- ft N(nd, crd).

6.2.4.2 Release Time Simulation. Release times always precede deadlines (oth-
erwise the cluster is rejected), and we assume that the opportunity window size is
uniformly distributed. The following approach produces the desired result, with r; the
release time of cluster C{.

n = di -Wi, i = l,...,k , (6.26)

where Wi ft U[wa, twj].

6.3 Testing DDTS

Most of the accepted approaches to target scheduling are based on some version of
the nearest neighbor (NN) algorithm,* so we used the NN algorithm as a benchmark
against which the DDTS algorithm was compared. But we had to considerably enhance
NN to include deadlines and release times, otherwise the comparison would be a bit
unfair since NN could be made to miss almost all of its targets by selecting a sufficiently
tight deadline structure.

Many threats were generated with THREATSIM to test the performance of the
DDTS algorithm. In most cases, particularly for dense dynamic threats with severe
deadlines, leakage risk for DDTS was considerably lower than for other algorithms.
Using a mild threat consisting of 100 targets, we conducted 8 tests:

* Papadimitriou and Steiglitz (1982); Lawler et al. (1985).

132

1. Expected leakage risk versus defense reaction time.

2. Expected leakage risk versus engagement time.

3. Quantity of targets leaked versus initial beam position.

4. Expected leakage risk versus cluster centroid speed variance.

5. CPU running time versus threat size.

6. Risk versus probability of correct target identification.

7. Risk versus fast steering damping constant.

8. Risk versus fast steering motion limit.

6.3.1 Expected Leakage Risk versus Defense Reaction Time

Defense reaction time is defined as the time elapsed between first detection of the
threat and the data handover from the battle manager to the DEW platform. Even for
this relatively easy threat (Fig. 6.4), DDTS consistently dominates the enhanced NN
algorithm, especially for small defense reaction times.

The principal reason for this dominance is that the NN method does not understand
deadlines and release times, and it is unable to reschedule targets when such constraints
are violated.

Expected
leakage

risk
(x 100%)

(100)

(Numbers in parentheses
are targets leaked)

t^
80 100 120

Defense reaction time (sec)

Figure 6.4. Even for a mild threat, DDTS reduces risk considerably.

133

As the reaction time approaches 120 seconds, the threat floats by the DEW platform
unhindered, and all targets leak through.

6.3.2 Expected Leakage Risk versus Engagement Time

Engagement time is the time elapsed since data handover from the battle manager.
Clearly, DDTS reduces the risk more rapidly than NN as the engagement evolves,
gaining 10 seconds of threat processing time as 60 seconds have elapsed (Fig. 6.5). This
gain is due to improved allocations of dwell times, shortened retarget times overall, and
a better target rejection policy. Other target scheduling algorithms, whether based on
NN principles or not, reject targets only because they are late and do not rearrange
schedules to account for the relative importance of targets.

1.0

Expected
leakage 0.6 - -

risk
(xl00%) 0A~^

0.2 +

0
40 50 60
Engagement time (sec)

Figure 6.5. DDTS gets better answers faster.

6.3.3 Quantity of Targets Leaked versus Initial Beam Position

Referring to Fig. 6.6, observe that the NN algorithm is very sensitive to the initial
aim direction of the DEW, essentially because it starts with the target nearest to
that initial aimpoint, rather than slewing to the target nearest to its deadline. No
targets leaked through with DDTS, whereas up to 16 leaked through with NN. This
is understandable, since NN will typically sweep from the middle of the threat to one
extremity, then return to the other extremity, thereby unnecessarily revisiting many
points in space. Observe that the total dwell and retarget times were identical for both
algorithms and showed no dependence upon the initial position of the beam.

134

Initial beam
position

Front
Middle
Rear

Leakers

DDTS NN

Dwell time
(sec)

0
0
0

6
16
11

DDTS

18.9
18.9
18.9

NN

18.7
18.7
18.7

Retarget time
(sec)

DDTS NN

45.6
45.6
45.6

46.0
46.0
46.0

Figure 6.6. The algorithm is very insensitive to initial beam position.

6.3.4 Expected Leakage Risk versus Cluster Centroid Speed Variance

Each cluster was given a different centroid velocity in accordance with the laws of
Eqs. (6.19) and (6.20). As the velocity or speed variance is increased, the threat is more
difficult to handle since it is spreading through space, and predicting its future state be-
comes critical. Nearest neighbor approaches are very myopic in this regard, scheduling
targets without due consideration of the future position at the time of their process-
ing. The advantages of predicting future target positions are clear from Fig. 6.7, where
the targets leaked by DDTS remain at zero as speed variance is increased, whereas
those leaked by NN increase rapidly beyond 10 km/sec. Note the interesting leakage
characteristics of DDTS below 5.0 km/sec due to the time-varying threat geometry.
As the cluster speed variations are increased, the threat is first harder to handle, then
easier. We were unable to explain exactly why this initial increase in risk for DDTS

1.0 i

0.8--
Expected
leakage

risk °-6

(x
0.4

0.2

0

(12)
■ t—

(10) (8) NN (6)

-* *

■ 0-
(3)
-0-

(0) DDTS (0)
-O 0-

(0)
-o-

(0)
—0

0.5
H-
2.5

+
5.0 7.5 10.0 12.5
Cluster centroid speed variance (km/sec)

Figure 6.7. DDTS is much less sensitive to velocity effects.

135

disagrees—at least qualitatively—with the corresponding decrease for NN. We suspect
that this minor deviation occurred because DDTS found a local minimum only at
2.5 km/sec.

6.3.5 CPU Running Time versus Threat Size

Both algorithms were run on a Silicon Graphis IRIS machine. Observe that, for
anything but trivial threats, targets will be rescheduled several times, so that there is
no point scheduling targets too far into the future. To avoid redundant work, we never
schedule more than k targets at a time, where k is called the "look-ahead" number. The
worst-case complexity of DDTS is 0(n3), where n is the quantity of targets scheduled,
but several experiments with k indicate that the target completion time actually varies
as k2-5, a slight improvement over the worst case.

Again, for most threats, DDTS was faster than NN, so a threat was chosen which
challenges all the subroutines of DDTS, the 2-opt subroutine especially, and the graph
shown in Fig. 6.8 reports the resulting completion time.

CPU
time

(x 4 sec)

200 400 600 800 1000

Quantity of targets (n)

Figure 6.8. In spite of considerable physics and optimization work, the DDTS algorithm
is efficient in time and space.

The graph was obtained for k — 100, a rather large number considering the fluidity
of the threat. Note that the implementation was on a sequential machine (IRIS), but is
intended for parallel implementation on actual platforms. Also, programming was not

136

optimized; however, a speed-up of a factor of about 2 to 4 can be obtained by passing the
current version of DDTS through a code optimizer. The Brent optimization subroutine
performed admirably, requiring an average of only 4 iterations to reach optimality. The
space requirements for DDTS are minimal because the dynamic memory allocation
features of the C language are exploited and only a few target sequences are kept in
storage at any given time.

6.3.6 Risk versus Probability of Correct Target Identification

The costs associated with target misidentification are severe. Target vulnerability or
hardness is misjudged, resulting in erroneous dwell times and probable reductions in
p . Aimpoint location errors are usually made as well, and these further reduce pK. For
the tests reported here, we made the conservative assumption that any misidentified
targets leak through; Figure 6.9 shows that pID has a significant effect on platform
performance, so that reliable target identification algorithms must be used to assure
acceptable platform performance.

1.0 -"

0.8 -"

Expected
leakage 06 —

risk
(x 100%)

0.4

0.2 --

0.2 0.4 0.6 0.8 1.0 p
ID

Figure 6.9. Platform performance is very sensitive to correct target identification.

137

6.3.7 Risk versus Fast Steering Damping Constant

In DDTS, platform hardware dynamics are modeled as second-order linear systems.
When control or steering components are underdamped, their settling time is usually
high, and this can severely increase retarget times, resulting in increased leakage risk.

Fortunately, as shown in Fig. 6.10, no severe harm is done, at least as far as the fast
steering system is concerned, until damping constants fall below 0.04.

1.0-

0.8

Expected
leakage

risk °-6

(x 100%)

■^ 8 FS
0.02 0.04 0.06 0.08 1.00

Fast steering damping constant

Figure 6.10. System performance is not sensitive to fast steering damping.

138

6.3.8 Risk versus Fast Steering Motion Limit

Motion limits of beam control and steering components affect performance only when
the angular distance between targets is large, which typically occurs only when threats
are rather sparse. For the threats used in these experiments, the fast steering motion
limits had no significant impact on performance, as the rather comforting but uninter-
esting graph of Fig. 6.11 indicates. The DDTS algorithm obviously sheduled targets in
such a way that few if any retarget angles exceeded a few milliradians. The inclusion of
hardware dynamics and constraints in the DDTS algorithm was essential to minimize

retarget times.

1.0--

0.8--
Expected
leakage

risk 0.6 - -
(x 100%)

0.4-f

0.2

^ 1—I—I—I—^e
20 40 60 80 100

Fast steering motion limit (mrad)

max

Figure 6.11. Motion limits had no effect on performance for the threat considered.

139

7. Conclusions and Future Work

During this three-year program, we have developed, tested, and delivered algorithms
for managing HEL and NPB platforms operating in earth orbit during the boost and
midcourse phases, with specific emphasis on the optimal allocation of weapon resources.
The resource allocation problem was expressed as a scheduling problem where the pros-
ecution of a potentially large collection of targets must be planned so as to minimize
the total cost of target leakage, the Expected Leakage Risk. This planning activity de-
termines in what order targets must be processed, how much processing time should be
allocated to each target, and which targets should be ignored when there is insufficient
time to process all targets by their deadlines.

From our detailed analyses and experiments, we conclude that the target scheduling
problem indeed turned out to be much more complicated than was expected at the
outset. Previous scheduling approaches, for instance, have ignored or neglected several
operational conditions and constraints that strongly influence the performance of DEW
platforms in both the boost phase kill and in the midcourse discrimination phase. The
elimination of such shortcomings forced us to conclude that previous studies had also
been too abstract and could have been more "physics-based". But the inclusion of
better physics models also painfully increased the computational complexity of conven-
tional scheduling procedures, so that some technology improvements were needed to
obtain an algorithm whose time and space behavior would be acceptable for this real-
time application. Based on a balanced mixture of formal and heuristic methods, the
Deadline Driven Target Scheduling (DDTS) algorithm satisfies the required operational
constraints and provides excellent performance and computational efficiency.

Fearing that too much modeling detail had been included in DDTS (over parametriza-
tion), we ran exhaustive sensitivity tests using THREATSIM, a threat driver specifically
designed to exercise DDTS. We confirmed that earlier algorithms had ignored physi-
cal phenomena whose inclusion in DDTS not only improved platform performance but
also influenced the internal structure of the optimization subroutines. But we could
not confirm that our chosen level of modeling detail is optimal in any sense. We are
now in fact certain that it is not because we have discovered during this writing that
platform functions contiguous to target scheduling may influence the schedules. Recent
unpublished research in DEW aimpoint selection (Probst 1992), for instance, indicates
that satisfactory aimpoint selection is not possible for certain threat configurations.
Targets should obviously not be scheduled for processing during configurations where
no suitable aimpoint can be found. Consequently, one important issue to be addressed
during further research is to integrate target scheduling algorithms with other platform
functions such as Aimpoint Selection and Aimpoint Maintenance.

141

Other than the rather obvious fact that deadlines constitute the most severe con-
straint when threats are at least moderately dense, no general conclusions about threat
complexity were sought during this research. The DDTS algorithm simply does the
best that is reasonably achievable with all the available information, and within the
stated operational constraints.

142

Acknowledgment s

This research was sponsored by the Strategic Defense Initiative Organization (SDIO)
of the Department of Defense (DoD); it was directed by Mr. William A. Fontana,
Project Engineer in the OCDE Section of the Rome Laboratory (RL) at Griffiss Air
Force Base. This sponsorship is sincerely appreciated.

The author would like to thank Mr. Kevin Probst for initiating and supporting
this program during his tenure at SDIO, and Mr. Fontana for his continued guid-
ance throughout this three-year research period. His assistance in providing important
technical connections with other technology development programs was helpful in our
attaining a sufficiently broad point of view for the target scheduling problem.

Although too numerous to mention individually, the author would like to thank
both contractor and government personnel working on various fire control, ATP, and
simulation testbed development programs for their comments and general recommen-
dations on this program. I would like, however, to thank a few specific individuals with
whom technical interactions were especially fruitful. To Mr. Gary Gurski of the Gen-
eral Research Corporation (GRC), many thanks for sharing with me the extensive fire
control work done at GRC: that work provided a flying start for my research. The bat-
tle management recommendations provided by Dr. Sheldon Cantor of the Aerospace
Corporation are also appreciated. Sincere thanks to Dr. Thomas Wehner of the Los
Alamos National Laboratory for providing the physical insight needed to develop the
conceptual NPB models used in this report.

I am grateful to Dr. R. Glaser (LLNL) for the careful review of the mathematical and
computational concepts on which the DDTS algorithm is based, and for his thorough
derivation of some of the functional relationships. I am particularly endebted to him
for his flawless C-code version of DDTS, and to Mr. Richard Gassner (RL) for his
/3-testing of the algorithm.

143

Appendices

145

Appendix A.

Derivation of Derivatives

We derive the angular derivatives BE{t0) and j>E(t0) used in Eq. (2.28) of Chapter 2.

Referring to Fig. A.l, and omitting E-subscripts,

Define w = x/y.

I r |= y/(xy + (y)2 + (z)2 ,

6 = tan (y/x),

(j) = cos -1

Vx2 + y2 + z*

XE = (XE' % ZE}

Figure A.l. Coordinate transformation diagram.

147

A.l Computing | r

d\r\ 2(xx + yy + zz)

dt y/x2 + y2 +z2
(Al)

A.2 Computing | 0

0 =
d(tan w)

~ dt

dv

1 - w2 J dt '

xy — yx xy — yx

X2(l+W2) X2(1 + (1)W2)
X

Hence:

<t>
xy — yx
x2 + y2 (A2)

A.3 Computing | <f>

where

<f> = d(cos v)
It

dv

VT^J dt '

v —
y/x2 + y2 + z2 '

dv
~dt

y/x2 + y2 + z2) z - z
xx + yy + zz

. yjx2 + y2 + Z2 .

(x2 + y2 + 22)

z — z
xx + yy + zz

x2 + y2 + z2 _

(z2 + y2 + z2)1/2 '

 i z{xx + yy + zi)
(a;2 + y2 + ^2)1/2 ~ (a.2 + y2 + z2)3/2

148

But

Combining,

<f> =

1 _(x2+y2+z2)l/2

v/n^2 (x2 + y2)l/2

(S2 + y2 + z2).(x2 + y2)l/2 (x2 + y2)l/2 '

V^Ty1
z(xx + yy + zz)

— z (A3)

149

Appendix B.

Derivat ion of the Normal Approximation

for P(Z > z)

Recall from the text in Section 3.3.1.2 (see Eq. (3.25)):

*'>->-«>(-6)fWÄ)5w(£)"v (ßl)

Changing variables, Let to = v2/2a^, then dw = 2vdv/2a2 = v/2a2dv. Thus,

[2(r2j^(n!)n2(72; yz2/2„o

But

/ e~wwndw = n! / i-u;(n+1)-1e-w

Js Js n\
n _s ;

dw = n\J2 —jr ■
1=0

Substituting, and letting a = JU
2
/2<7Q ,

°° an n sl

p(Z >z) = exp(-(a + 5)) J2 -^ Y^ J '
n=0 ' /=0

= (£^F)(E^)>
n=0 1=0

= prob(Xs < Xa) = prob (JC, - Xv < 0), (5.2)

where Xs and Xa are independent Poisson variables with parameter s and a, respec-
tively.

If we approximate each Poisson variable by a normal variable with a corrected mean
and same variance, then

prob(Xs - Xv < 0) = prob (Ns -Nv<0) = prob(N < 0),

151

where
N ~N(S-V-1/2,VsTv). (-B.3)

Hence,

z>,)-(l£dp2).
V yf S + V /

Resubstituting for s = z2 /2a2, v = (j,2 /2a2 and a0 = i2cr,

152

Appendix C.

Deriving the Dwell Time tD* from the
Kill Probability P/

In Section 3.3.1.4 (see Eq. (3.31)) a derivation of tD* from p*K was presented, but
a few mathematical details were intentionally deferred. These details are presented in
this appendix. Even though all the required symbols and definitions were introduced
in Section 2.3.3.1, a slightly different set of terms is used here to simplify exposition
and to provide a self-contained discussion.

Objective: Obtain expression for dwell time in terms of kill probability.

Notation

p kill probability

tj) dwell time

// mean hardness of target

a standard deviation of target hardness

L pi — 1.5a

U /X + 1.5(7

p probability (miss target) (beam circle D target circle = <f>)

p probability of maximum target coverage by beam

(beam circle C target circle or target circle C beam circle)

TDEW radius of beam circle = 4R\/y/irD (Ä, A, D defined below)

TAIM radius of target circle

7"! max {rDEW■.TAIM)

T-I min (rDEW, rAIM)

R distance from DEW to target

A° -KT\ maximum possible area of target coverage by beam

a angle of incidence of beam on target (a = 0 is optimal hit)

153

P DEW power

A wavelength

D optics telescope size

KT incidence angle damping constant

n ITPD2 cos a
V 4A^exp[A:7#TCOsa]

6 Qtd/a°

q0 1 — p0 , probability target is hit (at least partially) by beam

Define two random variables:

A = area of target coverage by beam (area of beam circle D target
circle)

H = hardness of target

Kill occurs if, and only if, 9 A > H.

Therefore,

pK = p(6A>H),

= Jp(9A > H) \H=h)fH(h)dh (fH is the pdf of H) ,

= / P(9A > h)fu(h)dh , since A and H are independent ,

= jp(A>^)fH(h)dh. (C.l)

Since 6 = Qt^/A0, evaluation of the above integral yields a relation between pK and
td- Clearly pK increases with 6 (and therefore with tj). Our goal is to determine, for
fixed pK, the corresponding 9 (and therefore <</).

For computational efficiency, we use approximations to the distributions of H and A.

Approximation for H: Assume H is uniformly distributed over a 3 standard deviation
range, [L, U] = \JJL - 1.5s,// + 1.5s]. Therefore,

0 otherwise

154

Approximation for A:

■

(0 with probability pQ

A — { A° with probability^

uniformly distributed on the range(0, A°)

That is, the CDF of A is (Fig. C.l)

r 0 if S < 0

Po + £ (flo-ft) */°* S <A°

{liis>A°

P{A >s)=<

Figure C.l. Plot of the CDF of A (go = 1 - P0)-

Therefore Eq. (C.l) simplifies to Eq. (C.2):

p. = h[p(A>-i)dh-
where (Fig. C.2)

h

(1 if h < 0

h
P(A^l>y=\%--h(%-K) ifO<h<A" 10 A°6"

0 if h > A°6

155

(C2)

q°-^e(q°"Pl)

Figure C.2. CDF of A.

The case h < 0 does not arise because L > 0 by assumption.

Expression (C.2) determines pK as a function of 9 (or tj). For 9 < L/A°, pK is
identically 0 since then h/9 > A0. We may dismiss this situation since by assumption
PK>0.

For 9 > L/A°, pK increases monotonically with 9, approaching qQ as q —► co (infinite
dwell time). We fix pK in (0,<?0) and solve for 9 in (L/A°, oo).

Evaluation of Eq. (C.2) hinges on the locations of L and U.

Case 1: L < A°9 < U.

Here Eq. (C.2) reduces to

1 fAe h
'* = Ia"A [«o-^(*o-*)]<** (C.3)

By monotonicity of pK, the condition L < A09 < U is equivalent to 0 < p> < p°
where p^ is the value of pK for 9 = u/A°:

P*° = ^ /' 19„ - £(«„ - UV* = iMU -L)- ^(^ - L>) %-Pu

= ^\%(Z°)-\^m(3a)
3<7 2*7

2U

since U — L — 3a, U + L = 2/x:

V
= %-{%-P1)JT- U

156

To solve Eq. (C.3) for 0, we let ß = A°9 and solve for ß in (L, U).

Therefore, pK—
A 6<J w -L) - h^{ß2-L2) (C.4)

which yields the quadratic,

(<Zo + Pi)ß2 ~ 2(z0L + 3apK)ß + (go -Pi)L2 = 0 (C.5)

There are two roots to Eq. (C.5):

ß =
qoL + 3apK ± J(q0 L + 3apK)2 - (g0 + P1)(g0 - PX)L

2

% + Pi

We now show that the "+" root is the desired solution in (L,U) to Eq. (C.4). View
the right-hand side of Eq. (C.4) as a function of /?, denoted r(ß). Then

±r(B) = J_ \h±HL _ ^A £2-1
dß

r{ß)
Z<T ß2

(C-6)

and

^r(ß) = ^(%-Pl)^ ß3 (C.7)

We are interested only in ß > 0. Here r(ß) is concave up (from Eq. (C.7)) and is
decreasing for ß < aL and increasing for ß > aL (from Eq. (C.6)), where

as /&-a<i.
\K+Pi

Of the two solutions rx and r2 to r(ß) = p/f(/3 > 0) (Fig. C.3), n is not in (L,U)
because n < aL < L. Since a solution to r(ß) = pK in (£, U) exists, it must be r2.
Furthermore, since n and r2 are the two roots to Eq. (C-5), r2 must be the larger

one—i.e., the "+" root (Fig. C.3).

157

1 ~" '2

Figure C.3. Plot of pK(ß > 0).

Recall that ß = A°q. The Case 1 solution is therefore

6 1 f ?oL + 3^ + V^ + 3<7^)2 " (?o + ^)(«o " Pi)L2

«o + *\ }
Case 2: U < A°6, or equivalently g0 > pK > p° = qQ - (qQ - p^fi/U. Hence Eq. (C.2)
reduces to

To solve Eq. (C.8) for 6, let ß = A°6 and solve for ß in (17, oo)

%-PI,TT2

(C.8)

PK =
1_

3(7

3<r

(%(U ~ L) - ^(Uz - L2)

(3*q0 - SL_a(2M)(3cr)"

= %-
/*(9„-l\)

/?

Therefore /? = ^(g0 — R)/<70 — i^-), an^ *^e C^6 2 solution is

e= K%-P1)
A°(q0-PKY

158

Recall that tj, — A o 6/Q. We summarize our results.

The dwell time td corresponding to kill probability pK is given by

{ V 1 ,,£<)<*<*,

td= {
Q q° + Pl (C.9)

where P° = q0~ (s0 - Jfc W^

159

Appendix D.

Heaps

We provide a more detailed but informal discussion of heaps and the HEAPSORT

routine (read Press et al. (1988) for an expanded treatment).

Heapsort is a popular sorting routine. It can be recommended wholeheartedly for
a variety of sorting applications. It is a true "in-place" sort, requiring no auxiliary
storage. It is an Nlog2N process, not only on average, but also for the worst-case
order of input data. In fact, its worst case is only 20 percent or so worse than its

average running time.

It is beyond our scope to give a complete exposition on the theory of Heapsort. We
will mention the general principles. If you want to understand the detail, we refer you
to Knuth (1973), or suggest you analyze the program yourself.

A set of N numbers a;, * = 1, ..., N, is said to form a "heap" if it satisfies the

relation
aj/2>aj for l<j/2<jN. (D.l)

Here the division in ;'/2 means "integer divide": i.e., it is an exact integer, or else it
is rounded down to the closest integer. Definition (Dl) will make sense if you think of
the numbers a,-, as being arranged in a binary tree, with the top ("boss") node being
al, the two "underling" nodes being a2 and a3, their four underling nodes being a4

through a7, etc. (See Fig. D.l). In this form, a heap has every "supervisor" greater
than or equal to its two "supervisees", down through the levels of the hierachy.

If you have managed to rearrange your array into an order that forms a heap, then
sorting it is very easy: You pull off the "top of the heap", which will be the largest
element yet unsorted. Then you "promote" to the top of the heap its largest underling.
Then you promote its largest underling, and so on. The process is similar to what
happens (or is supposed to happen) in a large corporation when the chairman of the
board retires. You then repeat the whole process by retiring the new chairman of the
board. Evidently the whole thing is an Nlog2N process, since each retiring chairman

leads to log2N promotions of underlings.

To arrange the array into a heap in the first place, a "sift-up" process is similar to
corporate promotion. Imagine that the corporation starts our with N/2 employees on

161

the production line, but with no supervisors. Now a supervisor is hired to supervise
two workers. If he is less capable that both his workers, one of them is promoted in his
place, and he joins the production line. After supervisors are hired, then supervisors
of supervisors are hired, and so on up the corporate ladder. Each employee is brought
in at the top of the tree, but then immediately sifted down, with more capable workers
promoted until their proper corporate level has been reached.

In the Heapsort implementation, the same "sift-down" code can be used for the initial
creation of the heap and for the subsequent retirement-and-promotion phase. One
execution of the Heapsort function represents the entire life-cyle of a giant corporation:
N/2 workers are hired; N/2 potential supervisors are hired; there is a sifting up in the
ranks, a sort of Parkinson's Law; finally, in due course, each of the original employees
gets promoted to chairman of the board.

Figure D.I. Ordering implied by a "heap", here of 12 elements. Elements connected by

an upward path are sorted with respect to one another, but there is not necessarily any

ordering among elements related only "laterally".

162

Appendix E.

Computing p(x < Y)

Consider the cumulative distribution functions below in Figs. E.l and E.2.

EFFx

Figure E.l. CDF of AßFFX-

FYWA

YO

Yl

A° AI A
>y

X "EFFy

Figure E.2. CDF of AEFFY-

The corresponding densities are

() = PxoW + PxA* - A°x) + C~
P

AO~
PX1

) , 0 < x < A!
0
X '

and they equal zero outside these regions.

i-Pyo-Pvi ^),0<y<A°y,

(E.l)

(E.2)

163

Define Z = X - Y.

The problem is to find p(Z < 0) (Fig. E.3)

roo i-y /oo ry roo
/ PXY(x,y)dxdy = / f(y)py(y)dy. (E.3)

-oo J—oo J—oo

f° 'y<0

f(y) = f px(x)dx = \PXO+ C ?A0~Pxi)y , o<y < Ai .
7—oo I X

I 1 , Aj- < y

(EA)

/oo pAx—£ . n_r) _TJ)0 \ Z"00

f(y)Py(y)dy = / fe0 + ^—%-Ss^- vk(v)<*y + / 7v(^ • (^-5)

N N N N

,.sssssssss J.. • • .

. VN'

•■ s s s s
• \ \ >. N - \ssssssssss

x-\\\\\\\\\,
*••////• -
\ \ \ N \ \ \
y^ • • • • "
.\ \ \ \ N \. ' ' ' \,\ N \

Figure E.3. Calculating p(X < F).

Case 1: ^<^

^<o)=f"f(«0+P4^)
'C1" fro-fro) 1-iVo-^i<

164

+

(l"XW ^^^^ * •

Case 2: A%- > Ai

+ (
1-Pyp-Pyi

Ay
)(A°F-^)+iVl,

= [PxoPro+Pxo
(t-PYQ-PYlh

A0 Ay
(A°x - e)+ ,

^-PXQ-PXI^-PYQ-PYI)

94° A0 (A - ef ,

+ (l~Pyo Pyih AO A°A4-r>
 —To \AY ~ AX) + Pyi ■ A%

(£.6)

rA°r-,
Piz < o) = j "' (Pxo + (1 Px;„x

PxJ y)Mv)dy
rA"x-e roo

+ / f{y)Py{v)dy + / f(y)Py(y)dy»
JA°,-e JA°x-c

P(Z < 0) = [PxoPyo + pj1'^"^} (Ay - e)

+ (1 - Pxo ~ PxJ i1 -Pro'PYJ
94° A°

«-ef

, ^-Px«-PxXA
+ PXOPYI + JÖ-

(E.7)

165

References

Abdul-Razaq, T.S., C.N. Potts, and L.N. VanWassenhove (1990), "A Survey of Al-
gorithms for the Single, Machine Total Weighted Tardiness Scheduling Problem,"
Discrete Applied Mathematics 26, 235-253.

Aho, A.V., J.E. Hopcroft, and J.D. Ullman (1974), The Design and Analysis of
Computer Algorithms, (Addison Wesley, Reading, MA).

Apostol, Tom M. (1974), Mathematical Analysis (Addison Wesley, Reading, MA).

Baker, K.R. (1974) Introduction to Sequencing and Scheduling (John Wiley, New
York, NY).

Berger, James 0. (1980), Statistical Decision Theory: Foundations, Concepts, and
Methods (Springer Verlag, New York, NY).

Bertsekas, Dimitri P., and J.N. Tsitsiklis (1989), Parallel and Distributed Computa-
tion (Prentice Hall, Englewood Cliffs, NJ).

Breiman, Leo (1968) Probability (Addison Wesley, Reading, MA).

Brent, R.P. (1973), Algorithms of Minimization Without Derivatives (Chapter 5)
(Prentice Hall, Englewood Cliffs, NJ).

Castanon, David A., et al. (1989), Advanced Weapon-Target Assignment Algorithms
Program: Final Report Report No. TR-440, (ALPHATEC, Inc., Burlington,
MA).

Castanon, David A., et al. (1989), Advanced Weapon-Target Assignment Algorithms
Program: Algorithm Approaches Report Report No. TR-428, (ALPHATEC, Inc.,
Burlington, MA).

Chung, Kai Lai (1974), A Course in Probability (Academic Press, New York, NY).

Coffman, E.G. (Ed.) (1976), Computer and Job-Shop Scheduling (John Wiley and
Sons, New York, NY).

Conway, R.W., W.L. Maxwell, and L.W. Miller (1967), Theory of Scheduling, (Ad-
dison Wesley Reading, MA).

167

Corynen, G.C., and R.E. Glaser (1992), Analysis and Optimization of Low Earth
Orbit Communication Links, Report UCRL-LR-109784, University of California,
Lawrence Livermore National Laboratory, Livermore, CA.

Corynen, G.C. (1993), Optimal Target Identification, UCRL report in progress, Uni-
versity of California, Lawrence Livermore National Laboratory, Livermore, CA.

Daniels, Richard L. (1990), "A Multiple-Objective Approach to Resource Allocation
in Single Machine Scheduling," European Journal of Operational Research 48,221-
241.

Devijver, P.A., and J. Kittler (1987), Pattern Recognition Theory and Applications
(Springer Verlag, New York, NY).

Duda, R.O., and P.E. Hart (1973), Pattern Classification and Scene Analysis (John
Wiley, New York, NY).

Dyer, M.E., and L.A. Wolsey (1990), "Formulating the Single Machine Sequenc-
ing Problem with Release Dates as a Mixed Integer Program," Discrete Applied
Mathematics 26, 255-270.

Eddy, W.F. (1977) "A New Convex Hull Algorithm for Planar Sets," ACM Trans-
actions on Mathematical Software, Vol. 3, No.4, December.

Ferguson, Thomas S. (1967), Mathematical Statistics: A Decision-Theoretic Ap-
proach (Academic Press, New York, NY).

Flood, M.M. (1956), "The Traveling Salesman Problem," Oper. Res. 4, 61-75.

French, S. (1982), Sequencing and Scheduling (John Wiley, New York, NY).

Garey, M.R. and D.S. Johnson (1979), Computers and Intractibility (W.H. Freeman,
San Francisco, CA).

Golden, B.L. and A.A. Assad (1986), "Vehicle Routing with Time-Window Con-
straints: Algorithmic Solutions," American Journal of Mathematical Sciences, 6,
Nos.3and 4, 251-428.

Holmes, R.B. and S.M. Rocklin (1990), Analysis of Discrimination Sensors, Net-
works, and Measurement Allocation Strategies: An Overview MIT Lincoln Labo-
ratory Project Report Number DA-10, 15 October 1990, Lexington, MA.

168

Hosein, P.A., and M. Athans (1990), "An Asymptotic Result for the Multi-Stage
Weapon-Target Allocation Problem," Proc. 29th Conf. on Decision and Control,
Honolulu, Hawaii, Dec. 1990, 240-245.

Horowitz, E., and S. Sahni (1978), Fundamentals of Computer Algorithms (Computer
Science Press, Rockville, MD).

Ibaraki, T., N. Katoh (1988), Resource Allocation Problems (MIT Press, Cambridge,

MA).

Jain, Anil K. (1989), Fundamentals of Digital Image Processing (Prentice Hall, En-
glewood Cliffs, NJ).

Joachimsthaler, E.A., and A. Stam 1988), "Four Approaches to the Classification
Problem in Discriminant Analysis: An Experimental Study," Decision Sciences
19 322-333.

Koehler, G.J., and S.S. Evenguc (1990), "Minimizing Misclassifictions in Linear Dis-
criminant Analysis", Decision Sciences 21 63-85.

Kise, H., T. Ibaraki, and H. Mine (1978), "A Soluable Case of the One-Machine
Scheduling Problem with Ready and Due Times," Operations Research 26, No.
1 121-126.

Knuth, D.E. (1973), The Art of Computer Programming, Volume 3: Sorting and
Searching (Addison-Wesley, Reading, MA).

Kuo, B.C. (1975), Automatic Control Systems (Prentice Hall, Englewood Cliffs, NJ).

Laporte, Gilbert (1992), "The Traveling Salesman Problem: An Overview of Exact
and Approximate Algorithms", European Journal of Operational Research 59
231-247.

Lawler, E.L. (1971a), "A Solvable Case of the Traveling Salesman Problem," Math.
Programming 1, 267-269.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (1985), The
Traveling Salesman Problem (John Wiley and Sons, New York, NY).

Lin, S., and B.W. Kernighan (1973), "An Effective Heuristic for the Traveling Sales-
man Problem," OR 21, 498-516.

169

Loomis, L.H. and S. Sternberg (1968), Advanced Calculus (Addison Wesley Reading,
MA).

Mealy, Gregory L., and G. Megaloudis (1989), Fire Control Sensitivity Study Final
Report No. TR-5559-1, (The Analytic Sciences Corporation, Reading, MA).

Moore, J.M. (1968), "Sequencing n Jobs on One Machine to Minimize the Number
of Tardy Jobs," Management Science 15, 102-109.

Nemhauser, G.L., A.H.G. Rinnooy Kan, and M.J. Todd, (1989) Optimization (North-
Holland, New York, NY).

Nemhauser, G.L., and L.A. Wolsey (1988), Integer and Combinatorial Optimization
John Wiley and Sons, New York, NY).

Norback, J.R and R.F. Love (1977), "Geometric Approaches to Solving the Traveling
Salesman Problem," Management Science 23, 1208-1223.

Papadimitriou, C.H. and K. Steiglitz (1982), Combinatorial Optimization (Prentice
Hall, Englewood Cliffs, NJ).

Papoulis, A. (1965), Probability, Random Variables, and Stochastic Processes (Mc-
Graw Hill, New York, NY).

Papoulis, Athanasios (1977), Signal Analysis (McGraw Hill, New York, NY).

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling (1988), Numerical
Recipes in C (Cambridge University Press, New York, NY).

Probst, Kevin B. (1992), Lawrence Livermore National Laboratory, Livermore, CA,
private communications.

Reingold, E.M., J. Nievergelt, and N. Deo (1977), Combinatorial Algorithms: Theory
and Practice (Prentice Hall, Englewood Cliffs, NJ).

Roberts, F.S. (1976), Discrete Mathematical Models (Prentice Hall, Englewood Cliffs,
NJ).

Rocklin, S.M., and J.W. Tolleson (1986), Discrimination Requirements for Multi-
layer Ballistic Missile Defense Systems, MIT Lincoln Laboratory Technical Re-
port No. 734, Lexington, MA.

170

Savelsberg, M. (1984), Local Search in Routing Problems with Time Windows, Re-
port OS-R8409, Centre for Mathematics and Computer Science, Amsterdam, The
Netherlands.

Seber, G.A.F. (1984), Multivariate Observations (John Wiley, New York, NY).

Sedgewick, R. (1988), Algorithms (Addison-Wesley, Reading, MA).

Smith, W.E. (1956), "Various Optimizers for Single-Stage Production," Naval Re-
search Logistics Quarterly 3, 59-66.

Solomon, M. (1986), "The Minimum Spanning Tree Problem with Time Window
Constraints," American Journal Math. Mgmt. Science, 6, 399-421.

Tsitsiklis, John N. (1992), "Special Cases of Traveling Salesman and Repairman
Problems with Time Windows," Networks 22, 263-282.

Vickson, R.G. (1980), "Two Single-Machine Sequencing Problems Including Control-
lable'Job Processing Times," AIEE Transactions 12, 258-262.

Vickson, R.G. (1980), "Choosing the Job Sequence and Processing Times to Minimize
Total Processing Plus Flow Cost on a Single Machine," Operations Research 28,
1155-1167.

171

® Recycled
White Bond

